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Kinetic terms in the RWM dispersion relation enable
stabilization; theory consistent with experimental results

Dissipation (Im(6W,)) and restoring force (Re(6W,))
from kinetic term enables stabilization of the RWM:

_5Woo + Wk
oWy + 0Wg

[B. Hu et al., Phys. Plasmas 12, 057301 (2005)]
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10.0¢ — Collisionality model improvements

— Anisotropy of energetic particles
— Further rotation effects (inc. poloidal)
— Eigenfunction modifications

— Neoclassical orbit modification? (with
G. Kagan)

[J. Berkery et al., Phys. Rev. Lett. 104, 035003 (2010)]
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NSTX-U will have lower collisionality and second, off-axis
neutral beam

— New 2"¢NBI| Present NBI

1.0 ———
constant {| (R;an=110, 120, 130cm)  (Ryay = 50, 60, 70cm)

| ST-FNSF [

q, B,p*

it .-.""- i\

NS TX Upgrade

)

P?

[:,01_ NSTX |
EI:I’J |TER?|Ike . *0.97
— [ scaling e

M .

—+— Total ~ Ve*—0.95
—&— Thermal

0.01 i i PR S T T A | 1 " I S T
0.001 0.01 0.10

V¥ ~ N/ T2

[J. Menard et al., submitted to Nucl. Fusion (2011)]
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EPs have a generally stabilizing effect that is independent of
rotation; Anisotropic distribution impacts stability
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[N. Gorelenkov et al., Nucl. Fusion 45, 226 (2015)] < Ko+ O (8) =
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with quantitative comparison to NSTX

exp (marginally stable)
wcb/ We, [J.W. Berkery et al., Phys. Plasmas 17, 082504 (2010)]
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Reduced collisionality (v) is stabilizing for RWMs, but only
near kinetic resonances

3 unstable - MISK currently uses an energy-dependent
% collisionality, MARS-K uses a constant.
©
s . .
s Possible improvements:
(®)
&0 i
% 03¢ ]  Particle, momentum, and energy conserving
o - 140132 @ 0.704 1 : : ..
04 . e BRI Krook operator for like-particle collisions
0.0 0.5 1.0 1.5 20 (suggested by G. Hammett):
m‘l’/mfb :

"
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Lorentz operator with pitch angle

e NSTX-tested kinetic RWM stability C(fj) = —verfj + verc f;
theory: 2 competing effects at lower v

— Stabilizing collisional dissipation
reduced (expected from early theory)

o o dependence:
— Stabilizing resonant kinetic effects g | |
enhanced (contrasts early RWM vs(en, W) = Sy | Zea + \%efﬂ \% (2él)f0 ”e*dt} % (1-1) %
theory)

[J. Berkery et al., Phys. Rev. Lett. 106, 075004 (2011)]
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Further exploration of the effect of plasma rotation

— Effect on equilibrium

— Including poloidal rotation

— Eigenfunction modification (next

slide)
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FIG. 4. (Color online) Dependence of (a) y and (b) w, on d/a in the
toroidal case when ({14, Q)=[1] (Q4.0)., [2] (£2,4:.,0.05Q4/q). [3] (24,
—0.05Q /), [4] (1.050;.0), and [5] (=€,;,—0.050,/g). respectively.
Note that in (a), the line that shows the result in case [2] overlaps with that
in case [5] because the y dependences on d/a in these cases are identical to

each other.

[N. Aiba et al., Phys. Plasmas 18, 022503 (2011)]
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Figure 26. (a) Comparison of plasma wg profiles versus g for the
RWM-unstable plasma excluding (black) and including (other
colours) the carbon impurity diamagnetic rotation in the radial force
balance equation for the calculation of the electrostatic potential
profile @ (). () Comparison of growth rates of the n = | RWM
computed with the MARS-F code plotted versus @ using the
generalized-geometry analytic fit to the particle orbit times and
including the neoclassical parallel resistivity profile for the plasma
resistivity.

[J. Menard, APS 2010 and 2011]

[J. Menard et al., Nucl. Fusion 50, 045008 (2010)]
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The RWM eigenfunction may be modified by several factors

NSTX wall with t,,,/t, = 10 NSTX wall with t,,,/t, = 10°
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[J. Menard and Y.Q. Liu, APS 2011]
Kinetic dissipation Plasma rotation

The importance of eigenfunction modification and Alfven resonances at rational
surfaces will come out of code benchmarking.
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How can we approximate eigenfunction modification in
MISK with an iterative approach?

1) We take the eigenfunction from the PEST marginally-stable eigenfunction: y -> 0, 61 -> 0,
SW, = -6W,, (at the marginal wall position).

2) We can calculate a fluid growth rate with that fixed eigenfunction, the true wall position,
and the assumption that the inertial term is still negligible.
VFTw = —0Wso /OWS,

3) We can calculate a kinetic growth rate and mode rotation frequency by including kinetic
effects and anisotropy corrections, but still assuming a fixed eigenfunction and negligible
inertial term. SWee + Wk

4) We can even iterate for corrected y and w,, and solve for multiple roots. [J. Berkery et al.,
Phys. Plasmas 18, 072501 (2011)]

5) Keeping the eigenfunction fixed, we could additionally try to include the inertial term
(which actually involves multiple roots as well):

(v — twr)Tw =

S + 6Wi + 67

o1 . - - :
oI =35 f po(y + i(nwy — wr))(y + i(nwy — wr) +iws;) [€1]7dV
J

6) Now, if the eigenfunction is allowed to change, how do we solve for a new one?
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Rotation and kinetic damping may also affect the ideal
no-wall stability limit
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Figure 1 — Growth rate of n=1 instability
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Figure 4. The fractional increase in S-limit versus M4 (0) for different go.
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[J. Menard and Y.Q. Liu, EPS 2012]
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[I. Chapman et al., Plasma Phys. Control. Fusion 53
125002 (2011)]
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Finite Larmor Radius Effects

Important Physics Is Given by the Evaluation of
the Orbit Integral.

The general solution of the linearized Vlasov equation including
zeroth and first order gyrophase-dependent terms is written as
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large for MHD modes at rational surfaces
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$CCFE Finite Qrbi

i i I HAGIS code

* Orbit widths can be 2ol i
very important for fast : |
jons eE -

e(oW,)

» Use guiding-centre © nop -
following Cdee '[O. 0.51 For typical MAST case, .
capture this physics - simple beam distribution |

0.0‘ T T T T I T T R A R R RO

0.2 0.3 0.4 0.5 0.6 0.7/
B

- RWM passively stable in ITER Advanced Scenario
due to kinetic damping

« Only capture these effects by including orbit widths
« Sensitive to rotation, so should not be relied upon!

11/15 IT Chapman ITPA MHD Topical Group Meeting, Toki 5 March 2012 - : EFDA




Finite Orbit Width

lan Chapman email:

“I need to talk to YQ and Jon Graves who probably have insight from the
algebraic formulation with FOW included that they’re working on.”

[OP PUBLISHING PLasMA PHYSIcS AND CONTROLLED FuUsIiON

Plasma Phys. Control. Fusion 52 (2010) 055004 (19pp) doi: 10.1088/0741-3335/52/5/055004

Neoclassical ion heat flux and poloidal flow in a
tokamak pedestal

Grigory Kagan and Peter J Catto

Plasma Science and Fusion Center, MIT, Cambridge, MA, 02139, USA
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