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Comment on Disruptivity and the ASC/MS/BP TSGs 

•  NSTX-U should try to reduce its 
disruption rate compared to NSTX. 

•  MS primarily responsible for n>0 
effects. 
–  RWM physics/control. 
–  Error field physics. 

•  Error field characterization and control 
should have a lead role in year 1 MS 
plans. 

–  Internal kink & tearing physics. 
•  ASC primarily responsible for n=0 

effects. 
–  Boundary & profile control 
–  Ramp-up and ramp-down optimization 

and automation 
•  Goal: at least attempt an intervention in 

every disruption 
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•  BP & LRTSG responsible for 
fuelling and divertor physics 
–  Cryo-pumps and lithium systems 
–  Heat flux mitigation schemes that 

protect both the divertor and the 
plasma. 
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Need to prioritize profile diagnostics and associated control 
development 

•  All this in the context of a first year operating campaign with reduced time for 
physics studies. 
–  Diagnostic physicists placing highest priority on off-line diagnostic development. 

•  S{G Suggestion: 
–  Focus on the realtime measurements during the first year. 
–  Select most mature measurements for control loops in 2nd year. 

Control Usage Physics/Operations Benefit Status/Prospects 
Realtime VfI •  Rotation Control 

•  Disruption Detection 
•  Maintenance of optimal rotation 
profiles for global stability and 
thermal transport. 
•  Earlier disruption detection. 

•  System hardware developed. 
•  realtime & offline analysis with 
BL #2 yet to be developed. 

Realtime MSE • rtEFIT constraint 
• q0/qmin/q-profile 
control 

•  Maintenance of optimal q-profile 
for global stability and thermal 
transport. 

•  Funded collaborator 
diagnostic. 
•  Detailed system development 
occurring now. 

Realtime 
MPTS 

• rtEFIT constraint 
• Disruption detection 
• Density feedback 

•  Better rtEFIT reconstructions 
(outer gap). 
•  Improved reliability of the 
startup. 
•  Earlier disruption detection. 

•  MPTS will be present, but 
realtime development unclear. 
•  Unclear how much effort is 
required to use as rtEFIT 
constraint. 
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Ideas 

•  Early MHD and lower density operation 
•  Internal kink / infernal mode dynamics 
•  Disruptions: halo currents 
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Collisionality is Most Strongly Impacted By Density 
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calculated as:!

Relate the power 
and βN as:!

Plasma current and density 
in terms of qcyl  and fGW.!

Solve for 
collisionality:!

•  Parameter η controls which q is used for 
collisionality scaling 
–  η=1 for edge q 
–  η=0 for core q 

•  Collisionality is independent of confinement 
scaling when written in terms of these 
variables. 

–  Safety factor also approximately cancels out. 

•  To decrease collisionality, we: 
–  Raise βN 

•  Upper limit on betaN from global stability or 
confinement. 

–  Lower fGW 
•  Will typically result in evolved qmin<1, early 

MHD is problematic. 
–  Raise BT 

•  But the scaling is fairly weak. 
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Early MHD Modes Locking to the Wall Are a Big Source 
of Low Density Disruptivity 

•  Modes are always associated with the 
rational surfaces entering the plasma. 
–  Have observed modes at q=2,3, & 4 to 

lock 
•  Large degree of variability in the rotation 

damping dynamics. 
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Empirical Change To the Fuelling are Used to Prevent Modes 
From Locking 

•  Changes in global parameters due to fuelling 
changes are quite subtle. 

–  But changes to rotation dynamics are profound. 

•  Need a better understanding of mode amplitude 
and torque dynamics. 

–  Small changes in resistive current evolution? 
–  Modification of the early EPMs? 

•  Is there a measurable quantity to put under 
feedback control? 

–  Density is probably a surrogate for what really matters. 
–  Degree of shear reversal? 
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Coupled m/n=1/1+2/1 Modes Limit Many Long-Pulse 
Scenarios 
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What is qmin when core n=1 modes turn on? 
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But also possible to have 
discharges that sit with qmin just 
above one for long periods."

• Database of 138 MSE constrained 
reconstructions. "
• EPM and ELM triggers cause modes to 
onset at large values of qmin. "
• Rotation shear at q=2 likely plays a role in 
the cases with ELM or EPM triggers."
• “Triggerless” modes probably initiated by 
internal kink or infernal modes as qmin 
approaches 1."
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Use NBCD To Understand What is the Required Increment of 
qmin above rational values to avoid internal/infernal modes. 
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How high must qmin be above 2.0 to avoid the 2/1 infernal mode?!
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Diagnostics for Divertor/Halo/Hiro/Evans/SOL Currents on 
Outer Vessel Not Yet Specified  

•  FY-10/11 run had 12 shunt 
tiles and 4 LLD rogowskis. 
–  Used for disruption, ELM, 

SOLC, HHFW studies. 

•  LLD removal eliminates the 
rogowskis and 6 of the shunt 
tiles. 

•  Need a plan for what to do 
on the outer vessel. 

–  Inner vessel largely fixed in 
scope.   
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Fig. 2 
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Ideas for “Optimal” Detection System for Poloidal Halo 
Current  

•  Should have sufficient toroidal 
resolution for higher-n components 
of the HC. 
–  6 toroidal locations is likely the 

minimum for good measurements. 
•  Would like to measure on both sides 

of the limiting point. 
–  Measure toroidal phase of n=1 

perturbation where current enters 
and exits. 

•  Could be all on OBD. 
•  Or on OBD and lower SPPs 

•  Must digitizer at >20 kHz 

Fig. 5 
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Shunt tile arrays on both the OBD and the SPPs would allow 
good halo current inventory and dynamics measurements 

Shunt tile for 
row-1 may be 
tricky?!
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Need to consider HC diagnostics in the broader context  

•  Recent interest has included not only the poloidal current, 
but also: 
–  The direction of the toroidal part of the halo current. 
–  Plasma kink displacements during the disruption. 

•  These would mandate additional divertor magnetics. 
–  Could be synergistic w/ other physics desires…need a careful study. 

•  But, should we invest time/money in the divertor if it will be 
changed out for Lithium systems and/or cryopumps? 

•  Who will take responsibility designing/installing/
troubleshooting all those additional sensors?  



Meeting name – abbreviated presentation title,  abbreviated author name  (??/??/20??)!

Other disruption topics… 

•  Unlikely that NSTX-U will generate runaway electrons. 
•  If fast camera data is available, can get thermal loading data. 

–  Must rely on BP group. 

•  Already have a decent understanding of H-mode disruption 
precursors from NSTX database analysis. 
–  Need to translate that information into PCS requirements. 

•  What additional diagnostics are required in realtime?  rtMPTS appears to 
be most pressing. 

–  Need PCS programmer time to code it up, but no runtime for the 
detection algorithms. 

–  Should be part of a larger “event handling” code infrastructure to be 
developed in ASC. 


