Summary of XP822

Field scaling of electron transport change with heating power

D. Stutman, L. Delgado, K. Tritz, M. Finkenthal Johns Hopkins University

S. Kaye, M. Bell, R. Bell, B. LeBlanc, E. Mazzucato PPPL

Goals: study χ_e change with P_b as a function of B_t

- Central T_e flattening, electron transport increase with P_b seen at 4.5 kG
- See how effect changes with B_t
- Check particle transport and high-k fluctuations at r/a=0.25 and r/a=0.65
- Technique: 'freeze-in' q-profile -> power steps -> B_t scan at fixed I_p/B_t
- Partly completed (1/2 effective run day, re-develop MHD free 4.5 kG shots)

T_e responds better at 5.5 kG, but central T_e still flat

- Less central χ_e degradation at high field (prelim.), but transport still rapid
- Possibly significant change in high-k with P_b, in particular at low B_t

Ne transport possibly improves with P_b

• Possibly ground-breaking results

¹/₂ run day needed to complete the XP

- Get high-k data for r/a=0.65
- Try to obtain 4-2 condition while staying in H-mode
- Neon injection for 4-2/5.5 kG case
- Time permitting, try 3.6 kG/0.7 MA condition