Is fast ion MHD driving rapid electron transport in NSTX?

D. Stutman, L. Delgado, K. Tritz and M. Finkenthal Johns Hopkins University

- Puzzle we try to solve: T_e flattening with P_{beam} in NSTX H-modes
- Is T_e flattening genuine electron transport effect ?
- Separating the role of P_{beam} in this effect
- The fast ion connection
- μ -tearing as possible link between fast ion MHD and electron transport
- 'Direct drive' hypothesis
- Implications and possible further work

1 MA / 4.5 kG, 'high performance' H-modes, t=0.42 s

- TRANSP computes increasingly rapid electron transport inside r/a ≤0.4
- Ion transport consistently around neoclassical

Effect persists throughout discharge, as well as at higher B_t, I_p

1.1 MA, 5.5 kG 127946, 127939 0.548 sec 1.5 **2 MW** 1.0 1.0 0.5 **6 MW** 1.0 0.5 **1.5 1.6 1.6 1.0 1.6 1.0 1.**

20 40 60 80 100 120 140 RADIUS (cm)

- Only slight rounding of T_e 'shoulders' with time
- Central T_e higher at 2 MW than at 6 MW, even at increased B_t and I_p

- Large islands in the central plasma
- Large Type-I ELMs affecting the center
- MHD flattening of fast ion density profile (main electron heating source)
- Non-classical beam slowing-down on thermal ions (e.g., Gates et al 2002)
 'diverts' large portion of P_{beam} from heating the electrons

No large islands in central plasma or large ELMs

• T_e remains flat during MHD quiescent period

Sensitivity analysis indicates FI redistribution unlikely

Stan Kaye

- FI diffusivity artificially increased in TRANSP to study redistribution effects
- While central χ_e would not significantly change, predicted neutron rate would decrease well below observation

FIDA data confirms peaked FI profiles as TRANSP predicts

- FI density drops at MHD events but maintains peaked character
- Redistribution of fast ion density not cause for T_e flattening

Power balance at high n_e consistent with classical slowing

• T_e flattening genuine electron transport effect

0.8

• Flatter T_e at higher P_b , consistent with unconstrained observations

• Largest χ_e change at 4->2 transition suggests change in *nature* of electron transport mechanism when P_{beam} > 2 MW

Paradigm of ∇T_e driven turbulence breaks inside r/a < 0.4

- Plasma with smallest ∇T_e has worst turbulence
- Central ∇T_e in high P_{beam} H-modes insufficient to drive any instability
- What is driving rapid electron transport in region of low ∇T_e ?

- Fast ions have also gradient in phase space
- Fast ion MHD (e.g., SAEs) likely mediating agent for electron transport

Persistent SAEs in high P_{beam} H-modes as GAE component

- High-n modes localized in central plasma, $\delta B/B \le 10^{-3}$ amplitude
- Lower frequency TAEs less persistent

Strong/weak GAE activity correlates with high/low central χ_e

FI MHD and T_e flattening correlate also in L-modes

Correlation with GAEs again most prominent

q-profile reversed in these plasmas

Very similar L-modes without GAEs have higher central T_e

SAEs predicted to drive electron transport through μ -tearing

- ρ_i sized islands at rational surfaces (AE eddy current cancels shear)
- Rational surface spacing ~ ρ_i -> large volume could be affected
- RSAE $\mu\text{-tearing}$ recently proposed by N. Gorelenkov
- Lee et al mode frequency however well below that of GAEs in NSTX
- Nevertheless hints for magnetic (stochastic) transport in flat T_e region

- Magnetic transport brings parallel velocity into play
- Electron thermal transport up to ~80 faster than Ne transport, as observed

1/v scaling of χ_e consistent with magnetic transport

- T_e profile does not change, while n_e increases linearly -> $\chi_e \propto 1/n_e$
- $1/v_{ei}$ expected for stochastic transport
- Not clear if early peaks in χ_e physical (correlation with integer-q in L-modes)

Tokamak-like χ_e at low P_{beam} , RFP-like at high P_{beam}

- Rapid magnetic transport without ∇T_e in RFP core, due to tearing modes
- Large χ_e increase beyond 2 MW in NSTX possibly explained by transition from electrostatic to magnetic turbulence

- Detector counting threshold scanned in time (10 ms)
- Apparent tail above 6 keV

Possible transport picture in high Pbeam **NSTX H-modes**

- 'Magnetic core', 'electrostatic edge'
- Strong influence of q-profile on electron transport
- Some stochastic ion heating, non-thermal T_e (T_i?) possible
- Alternate picture (AE 'direct-drive') being examined (Fredrickson, Gorelenkov)

• If hypothesis correct, substantial implications for fusion in general and for beam-driven CTF in particular, possible

- We might have defined a new confinement regime ('random-walk' step of both ions and electrons $\sim \rho_i$)
- Rapid electron transport driven by AEs may also explain T_e flattening inside ITBs in tokamaks
- NSTX best suited device to study fast ion MHD/electron transport connection

• Joint Transport/Energetic Particle research program connecting measurements of electron and ion EDF, magnetic and density fluctuations, with theory and modeling

• Experiments this run comparing GAE/no GAE H-modes (high/low V_{beam})