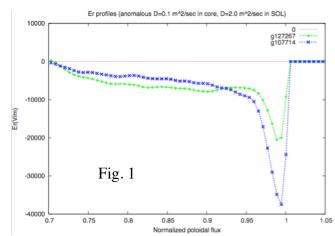
Princeton Plasma Physics Laboratory NSTX Experimental Proposal					
Title: Dependence of P _{LH} on Radius of the X-point					
OP-XP-1029	Revision:	(Approval da Expiration	Effective Date: (Approval date unless otherwise stipulated) Expiration Date: (2 yrs. unless otherwise stipulated)		
	PROPOSAL AP	1 2	,		
Responsible Author: R. Maingi		Date June 6, 2010			
ATI – ET Group Leader: H. Yuh		Date			
RLM - Run Coordinator: E.D. Fredrickson			Date		
Responsible Division:	Experimental Research Op	perations			
RESTRICTIONS or MINOR MODIFICATIONS (Approved by Experimental Research Operations)					

NSTX EXPERIMENTAL PROPOSAL

TITLE: Dependence of P_{LH} on Radius of the X-point AUTHORS: R. Maingi, S.M. Kaye, D.J. Battaglia

No. **OP-XP-1029** DATE: **June 6, 2010**

1. Overview of planned experiment


The goal of this XP is to measure the dependence of the L-H power threshold (PLH) on the radius of the X-point, i.e. in essence a triangularity scan. Specifically we will follow-up on XP 909, trying to confirm the previous results in discharges with low dW/dt.

2. Theoretical/empirical justification

Code calculations from XGC-0 have shown that the thermal ion loss at the X-point increases with the X-point radius, leading to the predicted formation of a larger radial electric field, E_r , and shear, E_r .

Operating from a premise that a critical E_r or E_r 'might be needed for H-mode access, it follows that discharges with large X-point radii (i.e. reduced lower triangularity δ_L) would have a lower L-H power threshold than discharges with a higher δ_L .

Figure 1 shows a comparison of the computed E_r from the XGC-O code for a low (blue) and high δ_L (green) discharges, using the EFIT02 pressure profiles as a starting point. I can be seen that the E_r and E_r ' are substantially higher for the low δ_L discharge, as previously presented by C.S. Chang.

The role of the X-point in setting PLH was investigated in XP909, and published in [R. Maingi, et. al., *Nucl. Fusion* **50** (2010) 064010]. While the raw input power was 50-60% higher for high δ discharges (Figure 2), those discharges also had the largest dW/dt terms. Hence a clear statement could not be made on the dependence of PLH (as measured by P_{loss}) on δ . Here we propose to re-run the low and high δ discharges, taking care to obtain comparable discharges with similar P_{OH} and dW/dt.

3. Experimental run plan (1/2 day)

- Develop baseline 0.8 MA, 0.45 T low and high δ discharges (based on pre-li 132721 and 132717 respectively see Figure 3) with low levels of lithium, i.e. 50-100 mg between discharges. (6)
- Delay NBI heating till after flattop for low δ discharge and measure PLH. NBI started at ~ 180ms in target discharges, delay to between 200-240 ms. (6)
- Run the same NBI program for high δ discharge (1)
- Add extra NBI power 50ms after lower power level, i.e. starting at 250-290ms (5)
- Time permitting: re-develop and measure PLH in medium δ discharge (e.g. 132708) (8)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

NBI up to 6 MW, but with the ability to change voltages between shots, no CHI or rf.

5. Planned analysis

The discharges will be analyzed with TRANSP to obtain P_{loss} . The edge profiles will be analyzed with XGC-0 to determine the E_r in the L-mode phase prior to the L-H transition.

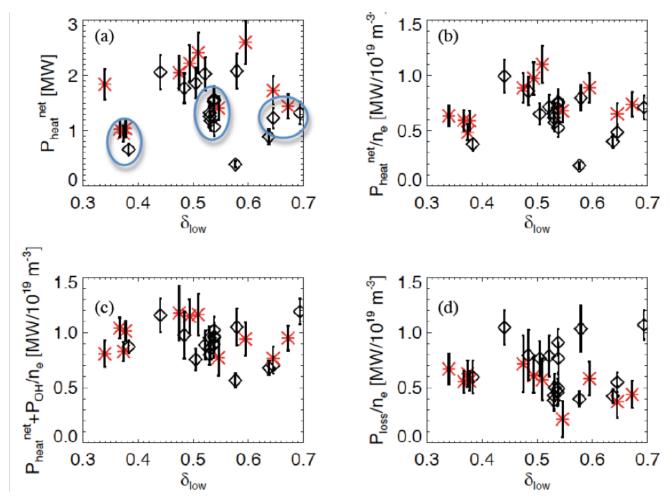


Fig. 2: Various metrics of input power as a function of lower divertor triangularity δ_{low} with NBI heating: (a) P_{heat} , (b) P_{heat} normalized by $\overline{n_e}$, (c) $(P_{heat} + P_{oh})$ normalized by $\overline{n_e}$, and (d) P_{loss} normalized by $\overline{n_e}$. The red stars represent data just prior to an L-H transition, and the black diamonds represent data that did not have an L-H transition. Ovals mark discharges closest to the power threshold.

6. Planned publication of results

The results will be published in a short letter in Nucl. Fusion. They will also contribute to an IAEA paper.

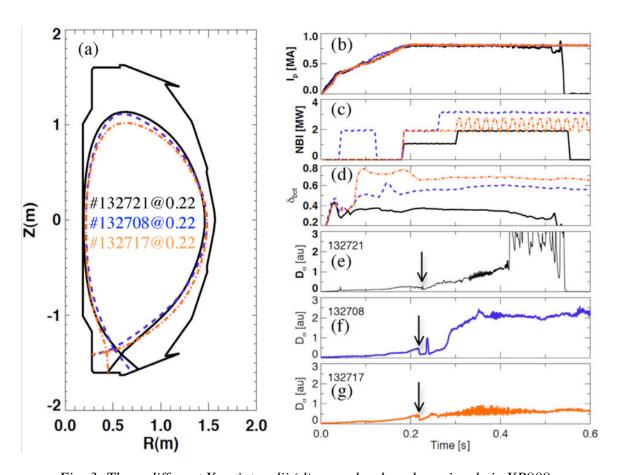


Fig. 3: Three different X-point radii (d) were developed previously in XP909.

PHYSICS OPERATIONS REQUEST

TITLE: Dependence of P_{LH} on Radius of the X-point No. OP-XP-1029 AUTHORS: R. Maingi, S.M. Kaye, D.J. Battaglia DATE: June 6, 2010

(use additional sheets and attach waveform diagrams if necessary)

Brief description of the most important operational plasma conditions required:

X-point/triangularity scan at constant X-point height at time of LH, as in previous discharges.

Previous shot(s) which can be repeated:

Previous shot(s) which can be modified: 132721, 132708, 132717

Machine conditions (specify ranges as appropriate, strike out inapplicable cases)

 I_{TF} (kA): **0.45 T** Flattop start/stop (s):

 I_p (MA): **0.8 MA** Flattop start/stop (s):

Configuration: Limiter / DN / LSN / USN

Equilibrium Control: Outer gap / **Isoflux (rtEFIT)** / Strike-point control (rtEFIT)

Outer gap (m): 10cm Inner gap (m): varies Z position (m): varies

Elongation: **2.0** Triangularity (U/L): **0.3-0.7** OSP radius (m): **40cm, 80cm**

Gas Species: \mathbf{D}_2 Injector(s):

NBI Species: **D** Voltage (kV) **A: 90 B: 60-90 C: 60-90** Duration (s):

ICRF Power (MW): Phase between straps (°): Duration (s):

CHI: **Off** / On Bank capacitance (mF):

LITERs: Off / **On** Total deposition rate (mg/min):

LLD: Temperature (°C): **unheated**

EFC coils: Off/**On** Configuration: **Odd** / Even / Other (attach detailed sheet)

DIAGNOSTIC CHECKLIST

TITLE: Dependence of PLH on Radius of the X-point
AUTHORS: R. Maingi, S.M. Kaye, D.J. Battaglia

No. OP-XP-1029
DATE: June 6, 2010

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Beam Emission Spectroscopy		\checkmark
Bolometer – divertor		√
Bolometer – midplane array	√	
CHERS – poloidal		√
CHERS – toroidal	√	
Dust detector		
Edge deposition monitors		√
Edge neutral density diag.		$\sqrt{}$
Edge pressure gauges	$\sqrt{}$	
Edge rotation diagnostic		$\sqrt{}$
Fast cameras – divertor/LLD		$\sqrt{}$
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes	$\sqrt{}$	
FIReTIP		$\sqrt{}$
Gas puff imaging – divertor		$\sqrt{}$
Gas puff imaging – midplane		$\sqrt{}$
Hα camera - 1D		$\sqrt{}$
High-k scattering		
Infrared cameras		$\sqrt{}$
Interferometer - 1 mm		
Langmuir probes – divertor		$\sqrt{}$
Langmuir probes – LLD		$\sqrt{}$
Langmuir probes – bias tile		
Langmuir probes – RF ant.		
Magnetics – B coils	$\sqrt{}$	
Magnetics – Diamagnetism	$\sqrt{}$	
Magnetics – Flux loops	$\sqrt{}$	
Magnetics – Locked modes	$\sqrt{}$	
Magnetics – Rogowski coils	$\sqrt{}$	
Magnetics – Halo currents		$\sqrt{}$
Magnetics – RWM sensors		
Mirnov coils – high f.		$\sqrt{}$
Mirnov coils – poloidal array		
Mirnov coils – toroidal array		
Mirnov coils – 3-axis proto.		

Note special diagnostic requirements in Sec. 4

Diagnostic Diagnostic	Need	Want
MSE		V
NPA – EllB scanning		
NPA – solid state		
Neutron detectors		V
Plasma TV		V
Reflectometer – 65GHz		V
Reflectometer – correlation		V
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		V
RF edge probes		
Spectrometer – divertor		
Spectrometer – SPRED		
Spectrometer – VIPS		
Spectrometer – LOWEUS		
Spectrometer – XEUS		
SWIFT – 2D flow		
Thomson scattering		
Ultrasoft X-ray – pol. arrays		
Ultrasoft X-rays – bicolor		
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.		
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray tang. pinhole camera		