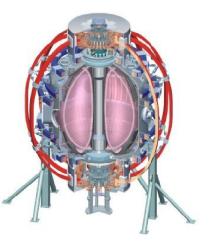


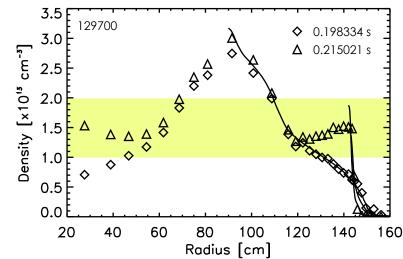
Supported by



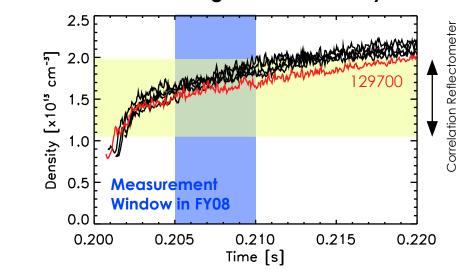
XP-1039: Ohmic H-Modes

S. Kubota, K.C. Lee, R. Maingi, S.J. Zweben, R.J. Maqueda, R.E. Bell, B.P. LeBlanc, S.M. Kaye, T.S. Hahm

> T&T TSG XP Review 1:30 PM LSB-318 July 27, 2010

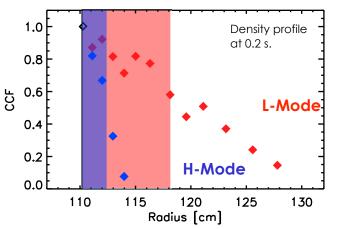

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

(FY05&08) XP-506: Physics of Ohmically Heated H-Modes


Some of the original motivations for XP-506:

Electron Density Profile Evolution

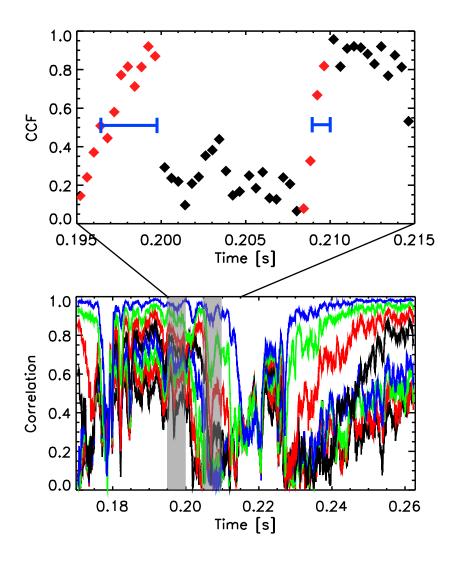
- Core and edge turbulence in L- and H-mode and across transition.
- Non-local (or core) turbulence response to ETB.
- L-H transition physics (e.g. precursors, critical gradients).
- Ohmic H-Modes target:
 - Peaked density profile is good target for correlation reflectometers.
 - No fast-ion driven fluctuations or external momentum input.



- XP-506 still incomplete:
 - FY05, no density profile measurements (run scheduling).
 - FY08, no GPI (scheduling), no pol. correlation reflectometer (req. system to be reconfigured).
 - Goal: Simultaneous measurements of edge & core turbulence, and density profile.

(FY08) XP-506: Physics of Ohmically Heated H-Modes

- FY08 version of XP-506:
 - I_p=900 kA, B_T=4.5 kG, LSN, Deuterium, 1/2 day XP.
 - L-H transition reproducibly repeated with short I_p rampdown.
- Main goal of simultaneous core profile and radial correlation measurements across the L-H transition completed, but ...

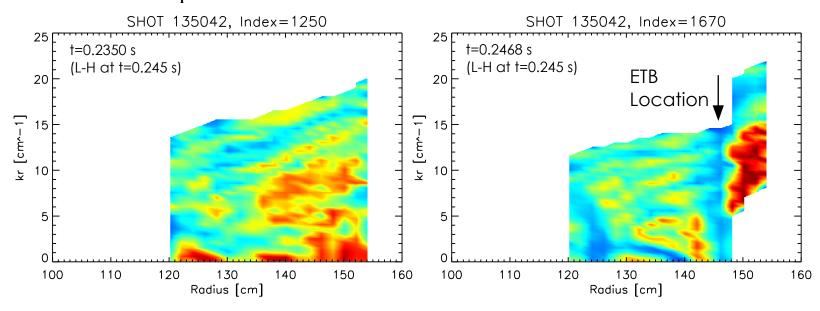


Correlation Coefficient Function (CCF) vs Major Radius

Issues:

- > These are core measurements. Edge?
- > $k_{\rm r}$ spectral information required for quantitative estimates.
- Correlation measurements in ~5 ms. Temporal resolution adequate?
- Set of turbulence measurements not complete, connection between core/edge:
 - Radial correlation reflectometers (CR), high-k.
 - BEaP probes (far SOL), reciprocating probe (near SOL, separatrix), FIReTIP (R_{tan}~150 cm).
 - No GPI, poloidal correlation reflectometer.
- Main conclusions:
 - Correlation measurements require higher temporal resolution (see next slide).
 - ETB location (R~145 cm) needs to be better diagnosed.
 - k_r spectral information required for quantitative estimate of correlation length.

Turbulence Evolving on Fast Timescale


- 2-channel correlation reflectometer
 - 5 ms time resolution
 - 1-2x10¹³ cm⁻³ density coverage

- FMCW-based radial correlation
 - 100 μs time resolution
 - 0.2-3.5x10¹³ cm⁻³ density coverage

Some Critical New Diagnostic Capabilities

- FY08 measurements motivated several modifications to microwave diagnostics.
 - Radial correlation reflectometers (FMCW modified):
 - > Electron density profiles with 7 μ s time resolution.
 - > Sub-millisecond turbulence radial correlations (100 µs), previous slide.
 - > Broad-k, back-scattering (30 μs), see below (from XP-929).
 - Dedicated 2-channel poloidal correlation measurements for poloidal flow.
- Additional new or upgraded diagnostics for 2010.
 - BES, ultra-fast GPI (400k fps), high-k (remote capability), FIReTIP (4 MHz bandwidth).

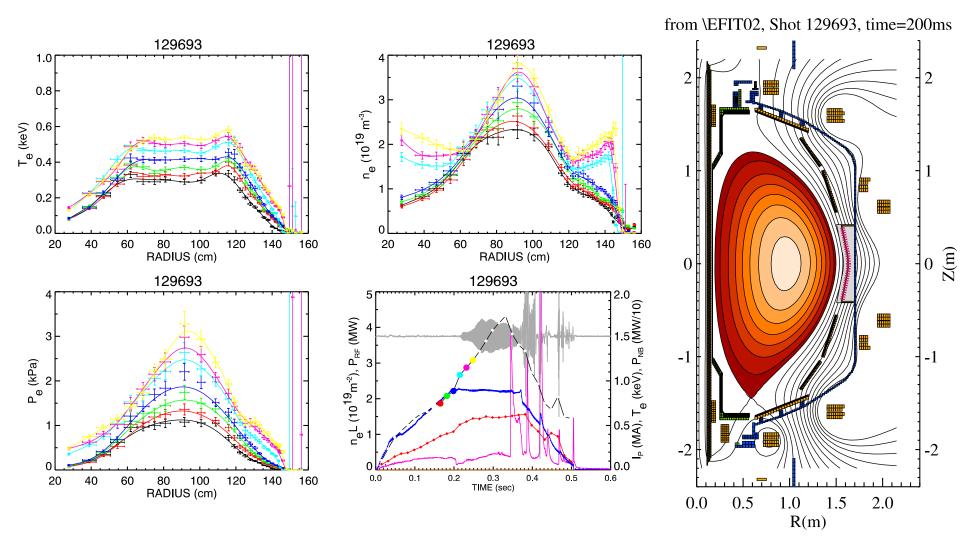
k_r Spectrum vs R in Core-Edge Across L-H Transition

XP-1039 Overview

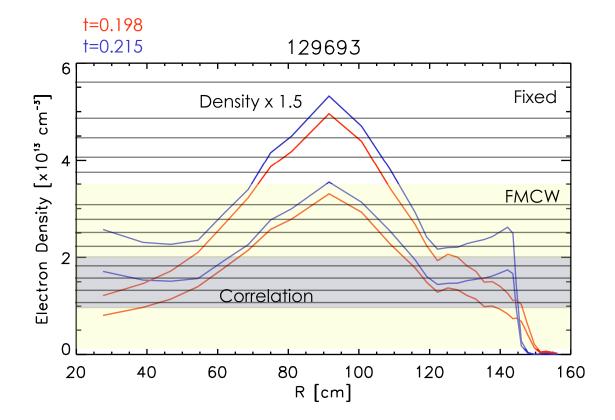
Goals

- Revisit Ohmic H-mode with advanced and upgraded turbulence diagnostics.
- Study turbulence in L-mode, H-mode and in relation to the L-H transition.
 - > Look at correlation of local (edge) and non-local (core) turbulence with ETB formation.
 - > Compare data with L-H transition theories, e.g. K.C. Lee's gyrocenter shift.
- Motivation
 - Ohmic H-modes.
 - > Peaked density profiles are good targets for reflectometers.
 - > No fast-ion driven fluctuations to complicate turbulence measurements.
 - > Avoid complicating physics due to external momentum input and hot fueling.
 - New and upgraded turbulence diagnostics available for 2010.
 - > Better coverage of core/edge with higher spatial and temporal resolution.

Required Operations and Conditions


- Clean machine condition.
- $I_p = 900 \text{ kA}, B_T = 4.5 \text{ kG}, \text{ Deuterium}, \text{ Ohmic.}$
- Edge density $\sim 1.5 \times 10^{13}$ cm⁻³.
- LSN and DND.
- Additional Requirements (Piggyback or XMP)
 - For quantitative evaluation of reflectometer turbulence data.
 - L-mode target, Ohmic or low NBI power:
 - > Constant B_T/I_p scan (S.J. Zweben's XP proposal, XP-1038)
 - > Magnetic axis vertical position and κ scans (XMP).

XP-1039 Run Plan


		4 shots
 Reflection layer ~ETB radius. Reflection layer outside ETB radius. 	(2 shots) (2 shots)	6 shots
 Change magnetic configuration to DND. Vary poloidal correlation reflectometer frequency: Reflection layer ~ETB radius. If time permits: 		6 shots
 Reflection layer outside ETB radius. Reflection layer inside ETB radius. 	(2 shots) (2 shots)	
Calibrated $D\alpha$, CHERS (passive).		
	 I_p=900 kA, B_T=4.5 kG, LSN, Deuterium Adjust gas puff for higher target den Use slight I_p rampdown for reproduct conditions and document. Vary poloidal correlation reflectome Reflection layer ~ETB radius. Reflection layer outside ETB radius. Reflection layer inside ETB radius. ange magnetic configuration to E Vary poloidal correlation reflectome Reflection layer ~ETB radius. If time permits: Reflection layer outside ETB radius. Reflection layer outside ETB radius. If time permits: Reflection layer inside ETB radius. Ignostics: Required: Reflectometers (FMCW, CF Calibrated Dα, CHERS (passive). Requested: BES, high-k, USXR, ME-SX 	Vary poloidal correlation reflectometer frequency: > Reflection layer ~ETB radius. (2 shots) > Reflection layer outside ETB radius. (2 shots) > Reflection layer inside ETB radius. (2 shots) ange magnetic configuration to DND. Vary poloidal correlation reflectometer frequency: > Reflection layer ~ETB radius. (2 shots) If time permits: > Reflection layer outside ETB radius. (2 shots) If time permits: > Reflection layer outside ETB radius. (2 shots) Ignostics: Required: Reflectometers (FMCW, CR, fixed-freq.), GPI, FIRETIP, ERD, MPTS, Magnetics, Calibrated Da, CHERS (passive). Requested: BES, high-k, USXR, ME-SXR (available Aug-Sept?), edge probes.

- EFIT, TRANSP, core and edge turbulence codes.

Reference Discharge

Target Density and Reflecometer Coverage

