Princeton Plasma Physics Laboratory NSTX Experimental Proposal Title: The k-space isotropy of ETG turbulence				
	PROPOSAL APPRO	OVALS		
Responsible Author: David	Responsible Author: David Smith		Date July 29, 2009	
ATI – ET Group Leader: K	TI – ET Group Leader: Kevin Tritz (T&T)		Date	
RLM - Run Coordinator: H	LM - Run Coordinator: Roger Raman		Date	
Responsible Division: Exp	erimental Research Operati	ions		
		<u>T</u>		

NSTX EXPERIMENTAL PROPOSAL

TITLE: k-space isotropy of ETG turbulence AUTHORS: David Smith

No. **OP-XP-**DATE: 29 July 2009

1. Overview of planned experiment

Investigate the k-space isotropy of ETG turbulence using the NSTX collective scattering system.

2. Theoretical/ empirical justification

The isotropy of ETG turbulence in k-space is a topic of debate within the gyrokinetic community. Dorland, PRL, 2000; Jenko, PRL, 2002; and Nevins, PoP, 2006 predict ETG turbulence is anisotropic in the k_{θ} - k_{r} plane, but Waltz, PoP, 2007 and Candy, PoP, 2007 predict ETG turbulence is isotropic. Radial streamers are key to the isotropy debate. According to Dorland/Jenko/Nevins, ETG radial streamers generate the most severe ETG-driven electron thermal transport for magnetic shear above s-hat=0.5. Experimental data addressing the isotropy of ETG turbulence would be valuable to the gyrokinetic community.

Among toroidal confinement devices and fluctuation diagnostics worldwide, the NSTX collective scattering system is *uniquely* capable of investigating the k-space isotropy of ETG turbulence, and this XP describes an experimental plan to do so.

3. Experimental run plan

The steerable optics of the NSTX collective scattering system can alter the vertical location of the scattering volume, which alters the ratio k_{θ}/k_r of measured wave vectors. In other words, the vertical location of the scattering volume changes the location of fluctuation wave vectors in the $k_{\theta}-k_r$ plane. Ray tracing calculations provide measurement configurations with different k_{θ}/k_r radios.

With guidance from past scattering measurements, the baseline shot is 124889 (5.5 kG, 700 kA, H-mode deuterium discharge with 4 MW of NBI). The high-k system will measure fluctuations at $R=133\pm2$ cm and r/a=0.54.

To investigate the role of magnetic shear in ETG isotropy, Ip ramp-downs will occur in some shots to transiently alter magnetic shear. To maintain NB confinement with Ip ramp-downs, the baseline plasma current will be 1 MA with ramp-downs to 800 kA.

The probe beam angle with respect to the X-axis will be 92.6° and the collection mirror angle with respect to the X-axis will be 230.5°. The table below gives the probe beam angle with respect to the Z-axis and exit window mirror angles for three scattering configurations, and the figure shows the k-space parameters.

Note that the scattering configurations below produce the largest k_{θ}/k_{r} variation in the low-k channel, and gyrokinetic simulations predict ETG anisotropy is strongest at low-k.

For statistics and reproducibility, obtain two baseline shots for each of the three configurations described below. Obtain additional shots (about 5) with a current ramp-down to transiently alter the magnetic shear in the outer plasma. This XP will need 1 run day.

PB Z ang	Channel	EW X ang	EW Z ang	k _θ	k _r	k⊥	k_{θ}/k_{r}
95.0°	1	-0.3°	1.4°	4.08	-15.54	16.07	0.26
	2	-0.9°	1.2°	3.38	-11.18	11.68	0.30
	3	-1.0°	1.0°	2.76	-7.32	7.82	0.38
95.7°	1	0.0°	0.6°	2.99	-16.30	16.57	0.17
	2	-0.6°	0.4°	2.20	-12.00	12.20	0.18
	3	-0.6°	0.2°	1.30	-8.42	8.55	0.18
96.4°	1	0.1°	0.0°	2.07	-16.79	16.92	0.12
	2	-0.4°	-0.2°	1.15	-12.72	12.78	0.09
	3	-0.4°	-0.4°	0.33	-9.10	9.11	0.04

4. Required machine, NBI, RF, CHI and diagnostic capabilities

4 MW of NBI as per shot 124889; high-k scattering

5. Planned analysis

LRDFIT, TRANSP, GS2

6. Planned publication of results

Observations addressing the isotropy of ETG turbulence warrant a PRL.

PHYSICS OPERATIONS REQUEST

TITLE: k-space isotropy of ETG turbulence AUTHORS: David Smith No. **OP-XP-**DATE: 29 July 2009

(use additional sheets and attach waveform diagrams if necessary)

Describe briefly the most important plasma conditions required for the experiment:

MHD activity, if present, needs to be steady-state without bursting modes or fast-ion losses. In the baseline shot 124889, MHD activity was steady-state.

Previous shot(s) which can be repeated: 124889 (4 MW NBI, 700 kA Ip, 5.5 kG TF) Previous shot(s) which can be modified:

Machine conditions (specify ranges as appropriate, strike out inapplicable cases)

 I_{TF} (kA): standard 5.5 kG Flattop start/stop (s):

I_P (MA): 1.0 MA Flattop start/stop (s):

Configuration: LSN

Equilibrium Control: **Isoflux** (rtEFIT)

Outer gap (m):	Inner gap	o (m):	Z p	osition (m):
Elongation k :	Upper/lo	wer triangula	rity δ:	
Gas Species: D	Injector(s):		
NBI Species: D Volta	age (kV) A:	B:	C:	Duration (s):
ICRF: Off				
CHI: Off				
LITERs: Off				
EFC coils:	Configuration	: Odd / Eve	n / Other (a	ttach detailed sheet

DIAGNOSTIC CHECKLIST

TITLE: k-space isotropy of ETG turbulence AUTHORS: David Smith

No. **OP-XP-**DATE: 29 July 2009

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Bolometer – tangential array	\checkmark	
Bolometer – divertor	\checkmark	
CHERS – toroidal	\checkmark	
CHERS – poloidal	\checkmark	
Divertor fast camera		
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges		
Edge rotation diagnostic	\checkmark	
Fast ion D_alpha - FIDA	\checkmark	
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes		
FIReTIP	\checkmark	
Gas puff imaging		
Hα camera - 1D		
High-k scattering	\checkmark	
Infrared cameras		
Interferometer - 1 mm	\checkmark	
Langmuir probes – divertor		
Langmuir probes – BEaP		
Langmuir probes – RF ant.		
Magnetics – Diamagnetism	\checkmark	
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes	\checkmark	
Magnetics – Pickup coils	\checkmark	
Magnetics – Rogowski coils	\checkmark	
Magnetics – Halo currents	\checkmark	
Magnetics – RWM sensors	\checkmark	
Mirnov coils – high f.	\checkmark	
Mirnov coils – poloidal array	\checkmark	
Mirnov coils – toroidal array	\checkmark	
Mirnov coils – 3-axis proto.		

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
MSE	\checkmark	
NPA – EllB scanning		
NPA – solid state		
Neutron measurements	\checkmark	
Plasma TV		
Reciprocating probe		
Reflectometer – 65GHz	\checkmark	
Reflectometer – correlation	\checkmark	
Reflectometer – FM/CW	\checkmark	
Reflectometer – fixed f	\checkmark	
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED		
Spectrometer – VIPS		
SWIFT – 2D flow		
Thomson scattering	\checkmark	
Ultrasoft X-ray arrays	\checkmark	
Ultrasoft X-rays – bicolor		
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.		
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		