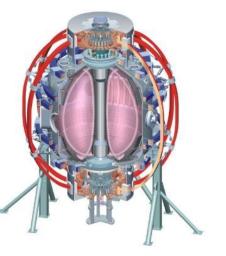


Supported by

Edge Impurity Transport Measurements Using the New MESXR Diagnostic

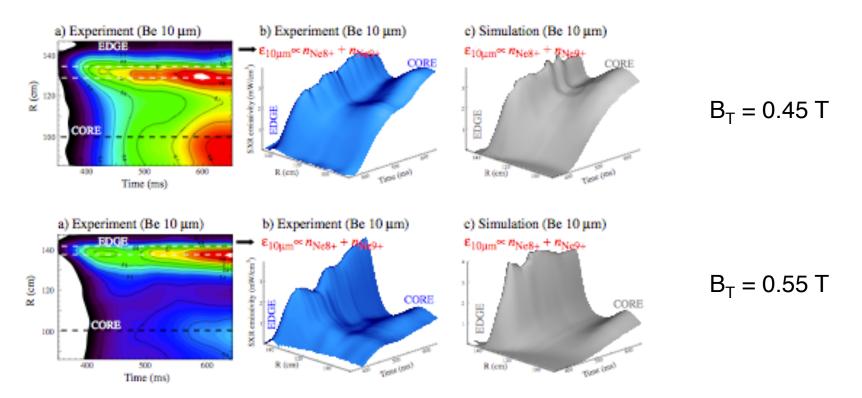


Dan Clayton

K. Tritz, M. Finkenthal, D. Kumar, and D. Stutman

Johns Hopkins University

XP Group Review Control Room Annex October 5, 2010

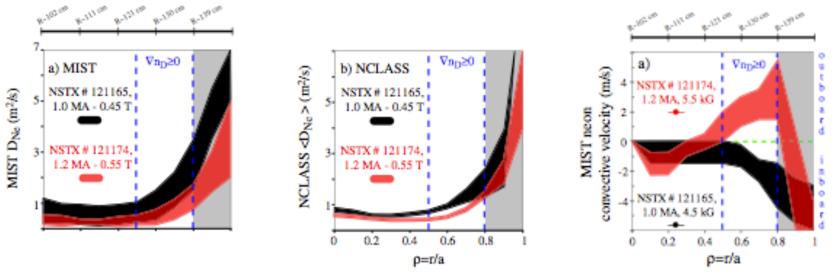

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

X-ray Emission from Plasma Impurities can be Utilized to Measure their Transport

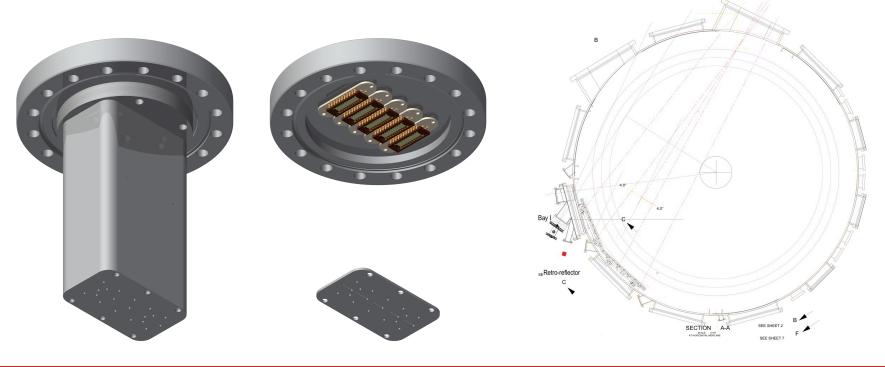
 XP 613 (Delgado-Aparicio) measured transport of Ne from gas puffs using the optical SXR array (~5 cm resolution, weak signal in the edge)



L. Delgado-Aparicio et. al., Nucl. Fusion (2009)

Impurity Ion Transport in NSTX H-mode Discharges is Neoclassical in the Core, Unknown in the Edge

- Result: Impurity ion transport in the core is neoclassical
- Uncertainty in the edge was too large to draw conclusions
- Questions remain about transport in the edge
 - How does carbon build up in ELM-free discharges?
 - How does transport vary throughout the pedestal region?
 - Does the particle transport barrier broaden with lithium?



L. Delgado-Aparicio et. al., Nucl. Fusion (2009)

Improved Spatial Resolution, Better Sensitivity in the Edge with New Multi-Energy Soft-x-ray (MESXR) Diagnostic

- MESXR has five photodiode arrays, each with 20 spatial chords providing ~1 cm resolution (R~127-147 cm)
- Each array has a different filter, with thinner filters (and one with no filter) for lower charge state (temperature) measurements in the edge

Proposal: 1/2 Run Day to Measure Transport of Neon in the Pedestal Region using the New MESXR Diagnostic

- Target plasmas: ELM-free H-mode, edge MHD quiescent
 LITER will be required
- Short neon puff some time after H-mode is well-established
 - Choose puff size that maximizes signal without perturbing plasma
- B_0 scan (constant q)
 - Neoclassical diffusion $D_{NC} \sim q^2/B_0^2$
 - Increased B_0 was shown to suppress impurity transport into the core
 - 1.0 MA, 0.45 T and 1.2 MA, 0.55 T previously used
- Transmission grating spectrometer (TGS) will be used to help verify concentrations of various charge states of Ne in the plasma edge (D. Kumar)

Proposed Run Plan

- A few shots will be required to determine optimum puff length, pressure of neon
- At least 2 discharges at each B_0 : a shot with Ne puff and a reference shot without
 - See if Ne lingers in subsequent shots (not an issue pre-lithium)
- Additional parameter scans (time permitting)
 - Time scan: vary the time of the Ne puff
 - How is transport affected by the evolution of the pedestal?
 - Do impurities enter the plasma edge at the beginning of a discharge, or do they slowly accumulate over time?
 - $-q_{95}(I_p)$ scan

