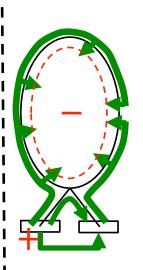
Shaing and Chang theories describe edge E_r generated via ion orbit loss to divertor

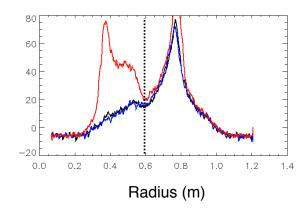
Shaing bifurcation model

- Collisionless ions lost on banana orbits to wall or SOL collision
- Return current via reduction in collisional ion flux out of plasma
- L-root (H-root):
 - Solution at high (low) edge collisionality


- KC Shaing, and EC Crume, PRL **63**, 2369 (1989)
- Small (large) poloidal rotation (E_r) and rotation shear (E_r shear)
- Finite (small) current
- Both roots are valid at critical v_{∗i}, plasma state can bifurcate
- Predicts appropriate (fast) timescale

Chang X-transport model

- X-point enhances orbit loss
- lons primarily lost to inner divertor


C.S. Chang, S. Ku, H. Weitzner, PoP **9**, No. 9, 3884 (2002)

Current loop closes through parallel currents through SOL and conducting divertor

Low triangularity data on NSTX consistent with this picture

- L-mode with P_{heat} < P_{loss}
 - D_α light primarily from outer divertor
 - Near-zero current through CHI gap
 - Negligible ion flux to inboard divertor probes

- L-mode with P_{heat} ~ P_{loss}
 - Large increase in D_{α} light from inboard divertor
 - Several hundred amps of current from inboard to ouboard divertor
 - Increase in ion flux to inboard divertor

At LH transition

- Edge collisionality very similar, independent of P_{nbi}, gas, lithium
- D_{α} drops on both inboard and outboard
- Current through CHI gap reverses in sign, decays to zero ~ 20ms
- Change in ion flux not well resolved (100 Hz sweep)

Proposal for 2011 run campaign

- Successful P_{LH} vs X-point radius scan in 2010
 - Modifies ion-loss rate. Larger P_{heat} needed for high-δ shape.
- Propose P_{I H} studies with low triangularity
 - High P_{I H} desired: little or no lithium, high TF, high density
 - NBI preferred (2 MW on NBI A)
 - Pitch angle for BES, GPI
 - Strike point and X-point control if possible
 - Want strike-points aligned with probes
 - Inboard probes run in J_{sat} mode to increase resolution (2.5 kHz)
- Will propose 1 day XP
 - Power scan with desired shape
 - Repeat with 1 or 2 different X-point heights (PEP-28)
 - Repeat with 1 or 2 different levels of divertor fueling
 - If time, I_p and/or TF scan with fixed shape

Propose continuation of P_{LH} vs ion species XP1036

- P_{LH} in helium vs deuterium explored in 2010 with symmetric RF phasing
 - Hindered by available RF power → P_{LH} in helium not indentified
 - Can be synergistic with RF conditioning
 - Would try to use strike-point / X-point control of low-δ shape if possible

