

FY11-12 T & T XP ideas

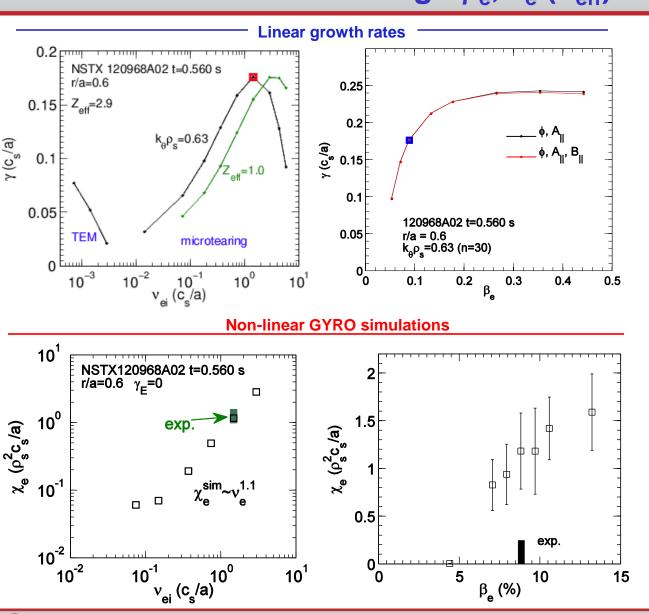
Walter Guttenfelder

S. Kaye, Y. Ren, D. Smith, K. Tritz, D. Clayton, J. Zhang, S. Kubota, K.C. Lee, ... and the NSTX Research Team

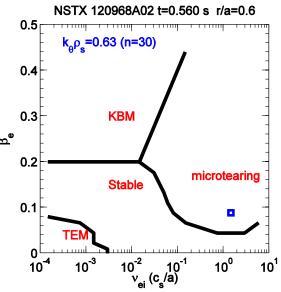
NSTX Research Forum for FY2011-12 March 15-18, 2011

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

U Quebec


Culham Sci Ctr

College W&M Colorado Sch Mines Columbia U **CompX General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics New York U Old Dominion U ORNL PPPL PSI** Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC Irvine UCLA UCSD U** Colorado **U Illinois U** Maryland **U** Rochester

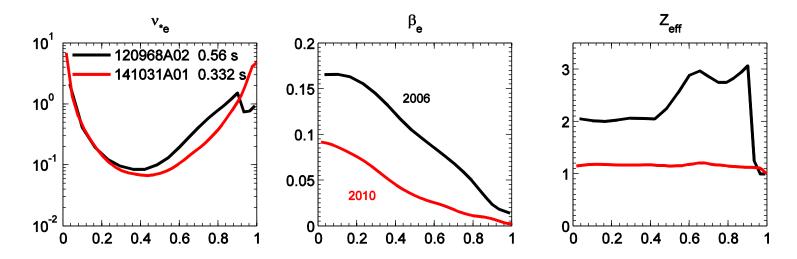

U Washington

U Wisconsin

Motivation from gyrokinetics* – microtearing modes favored at high β_e , ν_e (Z_{eff})

v_e - β_e linear regime diagram

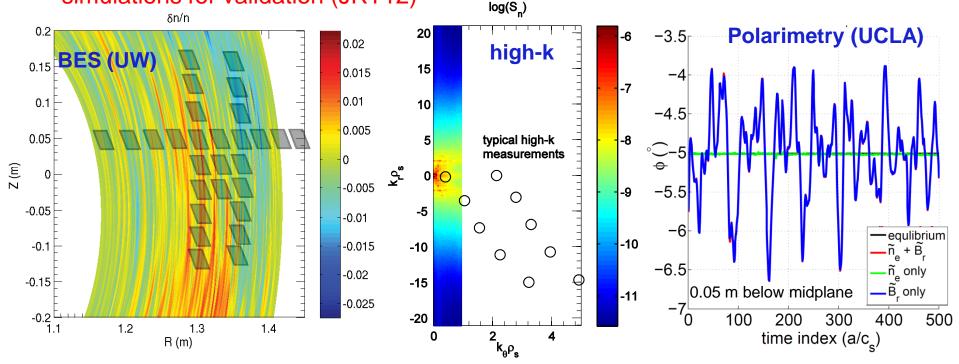
*Applegate et al. (2007) Wong et al. (2007,2008) Guttenfelder et al. (TTF,APS 2010)


Motivation from gyrokinetics

- Microtearing modes are favored at high β_e , ν_e (Z_{eff})
- ITG/TEM favored at lower v_e
- ETG will be favored at lower Z_{eff} (a/L_{Te})_{threshold}~(1+ Z_{eff} T_e/T_i)
- Microtearing (high β) not expected to contribute much to particle or momentum transport
- Utilize: (1) ν_{*} scan at high β
 - (2) β scan (or disparate β)
 - (3) Li scan (Z_{eff})
- To investigate:
 - (1) turbulence features consistent with microtearing mode, or transition in characteristics (e.g. MT \rightarrow TEM/ETG), and relation to χ_e (R11-1)
 - (2) differences in multi-channel transport trends (D_{imp}/χ_e , χ_ϕ/χ_e) as regime varies (e.g. MT \rightarrow TEM/ETG) (JRT12)

(1) v_* scaling of turbulence at high beta – (R11-1)

- Strong, favorable confinement scaling in STs ($\Omega_i \tau_E \sim \nu_*^{-0.95}$) (XP532, Kaye) microtearing (MT) modes one possible explanation
- XP1037 (Ren) found high-k intensity increased with decreasing v_* , opposite to previous τ_E scaling and MT expectation
- XP1037 operated at lower n_e , P_{NBI} ($\rightarrow \beta_e$) and Z_{eff} ETG predicted to be unstable


- Recent simulations (Guttenfelder et al., APS 2010) find microtearing favored at high β_e , ν_e (& Z_{eff})
- \Rightarrow Repeat v_* scan at highest feasible β_e (and Z_{eff}) with high-k, BES, FIReTIP, polarimetry (if available), reflectometers (depending on n_e profile) in an attempt to "identify" microtearing $\delta n/n$ (δB) trend

(1) v_* scaling of turbulence at high beta – (R11-1)

- For 2-3 values of v_∗, run a few conditions:
 - Baseline discharge
 - Gas puff + ME-SXR for perturbative impurity transport (JRT12)
 - n=3 NRMP modulation for perturbative momentum transport
- Repeat for two high-k locations (e.g. R=125 & 137 cm)
 - ETG can become more unstable further out in plasma, may expect different scaling trends

⇒ Want to identify optimal discharge(s) to focus extensive non-linear gyrokinetic simulations for validation (JRT12)

(2) β & Li scan to investigate impurity, momentum & electron transport – (JRT12)

- Microtearing simulations predict little particle or momentum transport
- Microtearing expected to dominate at high β_e , ν_e (& Z_{eff})
- Other modes (ITG/TEM/ETG) should become more important at lower β_e , ν_e , Z_{eff}
- Part 1 β scan to isolate microtearing (or at least some disparate values of β , maybe willing to sacrifice variation in other parameters)
 - shots for impurity puff+ME-SXR experiments
 - shots for perturbed momentum transport (departure from NC)
- Part 2 Vary Li (→Z_{eff}) as it has a significant stabilizing influence to ETG (slightly destabilizing to microtearing)
 - shots for impurity puff+ME-SXR
 - shots for perturbed momentum transport (departure from NC)
- High-k, BES, FIReTIP, polarimetry (if available), reflectometers (depending on n_e profile)
- Simultaneously analyze electron transport (JRT12)

