

Measurement of residual turbulence in ITBs and explaining high-k bursts

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Howard Yuh, Nova Photonics

Work supported by US DOE contract nos. DE-AC02-09CH11466 & DE-FG02-99ER54520

NSTX T&T Group XP review May 31st, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

Continuous high amplitude fluctuations limit T_e gradients under normal shear, bursts limit e-ITB

() NSTX

Measurement of residual turbulence in ITBs and explaining high-k bursts (H. Yuh)

ETG bursts persist even under strong reverse shear at elevated R/L_{Te}

- e-ITBs appear to be limited at an nonlinearly upshifted critical gradient
- ETG turbulence structure is simulated to have a strong
- High-k mirrors can be steered to view well below midplane, at approx. 60 deg poloidal angle

() NSTX

ETG turbulence spectrum changes with poloidal angle, high-k can measure off-midplane

• How to distinguish poloidal angle effect vs. k-space?

-0.5

0.6

0.8

1.4

1.6

1.2

R (m)

Simulation contour plots of density fluctuation spectra

Proposed run plan

- 1 half days allocated for XP1067
- Recreate 2008 XP829 e-ITB shots
- High power RF (2MW+) deuterium plasmas
 - NBI-A for MSE if possible (XP829)
 - RF only (XP821) with beam blips if necessary
- High-k starting in off-midplane position
 - Plenty of data at midplane
 - Shot to shot evolution of magnetic shear often occurs at XP start, varies with density
 - Move high-k to midplane. Test cell access necessary.
- 2nd half day will be using high-k at an intermediate poloidal angle to complete scan if 1st half day successful