

Supported by

XP1164: Collisionality scaling of turbulence at high beta & Assessment of core low-k turbulence and poloidal flow fluctuations

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U ORNL PPPL Princeton U **Purdue U** SNL Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Walter Guttenfelder, David Smith

S. Kaye, Y. Ren, R. Fonck, G. McKee, K. Tritz, D. Clayton, and the NSTX Research Team

T&T TSG Group Review

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA. Frascati **CEA, Cadarache IPP**, Jülich **IPP.** Garching ASCR, Czech Rep

Office of

Science

Experimental and theoretical motivation of v_* scan at high β

- Favorable v_{*} confinement scaling in STs: $\Omega_i \tau_E \sim v_*^{-(0.8-0.95)}$ (Kaye, NF07; 2011)
- Microtearing (MT) modes one possible explanation: $(\chi_e)^{MT} \sim v_{*e}$ (Guttenfelder PRL11)
- XP1037 (Ren) found high-k intensity increased with decreasing v_* , opposite to naïve expectation from previous τ_E scaling and MT modes
- XP1037 operated at *lower* n_e , P_{NBI} ($\rightarrow \beta_e$) and Z_{eff} ETG predicted unstable

- ⇒ Goal: complement XP1037 with turbulence measurements during v_* scan at higher β_e and Z_{eff} to isolate microtearing modes (R11-1)
 - Higher β_{e} and $Z_{eff}\left(\nu_{e}\right)$ maximizes microtearing instability
 - Higher Z_{eff} is stabilizing to ETG
- Turbulence and transport data will be used for validation with gyrokinetics
- Use high n_e, ELM-free Li discharges for high β_e and Z_{eff}

 $\left(\frac{a}{L_{\text{Te}}}\right)_{\text{crit}}^{\text{ETG}} \sim \left(1 + Z_{\text{eff}} \frac{T_{\text{e}}}{T_{\text{i}}}\right) (\cdots)$

Assess poloidal correlation lengths in core region with expanded BES system

- Correlation length database (100+ entries) from 2010 BES data indicates poloidal correlation lengths are related to I_p and P_{NBI} :

 $L_c[cm] \approx 8.4 \times I_p[MA] + 2.3 \times P_{NB}[MW] \pm 3.6$

- 2010 measurements obtained with 3 or 4 poloidally-separated channels at R=140 cm (r/a~0.85) using 16 or 24 BES channels
- ➢ |B| scaling not clear from database
- 2011 goal: Assess poloidal correlation lengths with 6 poloidally-separated channels at R=130 and 136 cm (r/a~0.4 and 0.65) using 32 BES channels
- Also, assess poloidal flow fluctuations and flow shear using 3x3 grid at R=130-136 cm
- Scan I_p , P_{NBI} , and |B|
- Require discharges with 200+ ms, ELM-free, MHD-quiescent periods

Engineering parameter space for v_{*e} , P_{NBI} , I_p scans

 Z_{eff} scan (first shots adding L_i) v_{*e} scan (fixed I_p/B_T, ~4 MW) P_{NBI} scan (0.9 MA/0.45 T) I_p scan (B_T=0.45 T, ~4 MW)

NSTX

(3 conditions) (+2 conditions) (+2 conditions)

I _p / B _T	0.35 (→0.38)	0.45	0.55 (→0.52)
0.7 (→0.76)	(3) P=4 MW	(7) P=4 MW	
0.9		(1) P=4 MW (4) P=3 MW (5) P=2 MW	
1.1 (→1.04)		(6) P=4 MW	(2) P=4 MW (2a) P=3,2 MW

Plan to pick baseline fiducial discharge (0.45T/0.9MA) from established high-Li discharges early in run (XP1133,...). Will be used prior to XP for:

- ray tracing calculations to locate high-k (two locations separated $\Delta R \approx 5$ cm, no NTC access required)
- linear gyrokinetic analysis to verify ETG stability, microtearing instability

Shot list (1 day, FY2011)

- 1) Reproduce shot 138555 I_p=0.9 MA, B_T=0.45 T, P_{NBI}=4, low lithium (50 mg/shot) (2+1 shots)
 - Best shape and Li to span $I_p/B_T = 0.7/0.35 \rightarrow 1.1/0.55$ MA/T ($v_{*e} \sim B^{-4}$) with "minimal" MHD, EPM, *AE
 - Outer gap ~10-13 cm for high res. TS, possibly isolate W_{ped}(v_{*}) scaling
- 2) Acquire BES and high-k (R=135 cm) (2 shots)
- 3) Increase lithium (250-300 mg/shot) to reach ELM-free, Z_{eff} =3-4, if necessary reduce power to match $T_e(R=135)$ (3 shots)
- 4) Acquire BES and high-k (R=135 cm) (2 shots)
- 5) Remotely move high-k (R=140 cm) (no NTC access) (2 shots)
- 6) Move to $I_p=1.1$ MA, $B_T=0.55$ T, match n_e , adjust P_{NBI} to match $T_e(r)/B^2$, adjust Li to match Z_{eff} (2+1 shots)
 - If unsuccessful, move to I_p=1.04 MA, B_T=0.53 T (<u>+2 shots</u>)
- 7) Acquire BES and high-k (R=140 cm) (2 shots)
- 8) Remotely move high-k (R=135 cm) (no NTC access) (2 shots)
 - If all goes well, try for 1 or 2 additional P_{NBI} (2,3 MW)
- 9) Move to I_p=0.7 MA, B_T=0.35 T, match n_e, adjust P_{NBI} to match T_e(r)/B², adjust Li to match Z_{eff} (2+1 shots)
 - If unsuccessful, move to $I_p=0.76$ MA, $B_T=0.38$ T (+2 shots)
- 10) Acquire BES and high-k (R=135 cm) (2 shots)
- 11) Remotely move high-k (R=140 cm) (no NTC access) (2 shots)
 - If this I_p/B_T is problematic, skip second high-k location
- 12) Move to I_p=0.9 MA, B_T=0.45 T, P=3 MW (return high-k to R=135 cm) (2+1 shots)
- 13) Move to I_p=0.9 MA, B_T=0.45 T, P=2 MW (<u>2+1 shots</u>)
- 14) Move to I_p=0.7 MA, B_T=0.45 T, P=4 MW (<u>2+1 shots</u>)
- 15) Move to $I_p=1.1$ MA, $B_T=0.45$ T, P=4 MW (2+1 shots)

Total shots = 31+11 = 42 shots (with contingency)

If too many shots:

Skip step 3, slower Li introduction as attempt to get Z_{eff} scan (3 shots) (possibly get similar data from XP1113, depending on high-k/BES configs.) Skip steps 5,7,11, second high-k location (6 shots)

Operations and Diagnostics

Required

- All 3 beams available for power scan (always source A for MSE)
- Magnetics, TS, CHERS, MSE
- High-k (two locations separated by $\Delta R \sim 5$ cm; remote, no NTC access required)
- BES 3 poloidal arrays (18 ch.); 1 radial array (+6 ch); 3×3 matrix (+ 3 ch)
- ME-SXR and trace impurity puffs (possibly contribute to JRT12)
 - No deleterious effects from Ne puff on BES last year (142184)

Desired

NSTX

• Would ideally wait until after polarimeter installed (UCLA, estimated Aug-Sept 2011) for δB measurements, but not necessary

XP1037 operated at much lower n_e , β_e , Z_{eff}

