

Supported by

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Yang Ren On behalf of T&T TSG

B318 Sep. 19th, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Overview

- Need to develop T&T goals in the 5-year plan for FY14-18
 - The major goal of NSTX-U program is to explore ST as a viable concept for FNSF/Pilot
 - T&T TSG needs to develop predictive capability for the performance of FNSF/Pilot (both 0D and 1D)
- Need to prioritize related new diagnostics accordingly
 - BES upgrade (δn , δv_{pol})
 - UF-CHERS (fast δT_i and δv_{tor})
 - Doppler backscattering, DBS (δn, δv_{pol})
 - Radial polarimeter (δB)
 - Cross polarization scattering (δB)
 - Phase contrast imaging, PCI (δn)
 - GPI upgrade (δn , δv_{\perp}) (presentation)
 - New high-k (δn) (presentation)
 - FIReTIP upgrade (δn) (presentation)
 - Reflectometer upgrade (δn) (presentation)
 - ME-SXR (δT_e , δn transport) (presentation)
 - Profile reflectometry (n_e, transport)
 - CXIS ($T_{i,e}$, $v_{\theta,\phi}$, transport)

Approach

- Two thrusts for the 5-year plan
 - Identify instabilities responsible for anomalous electron thermal, momentum, and particle/impurity transport in L and H mode plasmas
 - Establish and validate reduced transport models (0D and 1D) for NSTX-Upgrade plasmas
- Three spatial regions of concern in NSTX NBI H-modes relevant to NSTX-U and beyond
 - Core gradient region (r/a~0.4-0.9) inside pedestal where significant gradients in thermal plasma exist (→<u>microinstabilities predicted</u> <u>unstable</u>) (also applies to L-mode plasmas)
 - Core flat region (r/a<~0.4) approaching magnetic axis where thermal gradients become small (\rightarrow <u>microinstabilities predicted stable</u>) but significant fast ion pressure (P_{fast}/P_{tot}≤50%) (Alfvenic modes important)
 - Pedestal (r/a>0.9) pedestal height plays an important role in global H-mode confinement (BP TSG)

Two thrusts to address core gradient region (for both L and H plasmas)

- Identify instabilities responsible for anomalous transport (thermal, momentum, and particle/impurity)
 - Measure scaling of local transport (χ_e , χ_{ϕ} , D_d, D_c) with relevant parameters (v_e , I_p, B_T, γ_E , s, q, ...)
 - Steady state analysis and perturbative experiments
 - Measure turbulence characteristics ($\delta n_e, \delta B_r, ...$) and scaling with parameters
 - k_{θ} spectra ($k_r \sim 0$) highest priority, most relatable to transport
 - <u>Multi-scale</u> spectrum of modes possible ($k_{\theta}\rho_s$ =0.1-20+), would like complete k-space coverage
 - Focus on parameter regimes where instabilities are expected to be isolated
 Use 2nd NB and 3D field coils as controlling tools
 - Compare with linear and non-linear predictions to discriminate theoretical modes
 - k spectra and transport fluxes
- Establish and validate reduced transport models for NSTX experiments
 - Validate existing 0D confinement scalings ($v_e, \beta_e, I_p, B_T, ...$) \rightarrow distinguish W_{core} from W_{ped}
 - Measure 1D local transport scaling, develop profile database (for most relevant scenarios)
 - Develop transport models (for most relevant scenarios)
 - Start with analytic fits to linear and non-linear GK simulations (*a la* IFS-PPPL for ITG) for µ-tearing and ETG
 - Validate (and update as necessary) TGLF against gyrokinetics for NSTX/NSTX-U parameters
 - Validating neoclassical transport models seems important
 - Validate predictive transport simulations with 0D confinement scaling (empirical pedestal scaling? Overlap with Boundary Physics) for NSTX/NSTX-U/MAST
 - Validate predictive transport simulations with 1D profiles for NSTX/NSTX-U/MAST
 - Use predictive transport simulations for FNSF/Pilot

FY14 Goals

- BES is expected to be available; high-k is not likely to be available; 2nd NBI available; modest increase in Bt and Ip -> focus on low-k turbulence
- Implement high-k scattering in FY14
- Thrust 1:
 - Measure low-k turbulence in H-mode plasmas in lower ν^* regime with higher Bt and Ip with transport measurements and compare with low-k gyro-kinetic simulations and neo-classical transport calculations
 - Determine whether ion thermal transport is still neo-classical
 - Determine transport channels correlated with low-k turbulence
- Thrust 2:
 - Validate/establish 0D confinement scalings with higher Bt, Ip and lower ν^{*}

FY15 Goals

- High-k scattering system is available; expecting higher Bt and Ip (lower ν^*)
- Thrust 1:
 - Measure high-k turbulence and B_r fluctuations in H-mode plasmas a wide range of ν^* by varying B_T and I_p together with thermal transport measurements and compare with high-k gyro-kinetic simulations
 - Exploring the parametric ranges for the correlation between e-transport and high-k turbulence/Br fluctuations
- Thrust 2:
 - Validate 0D confinement scalings with even higher Bt, Ip and lower ν^{*}
 - Use validated 0D confinement scaling to predict 0D performance of FNSF/Pilot
 - Start analytic fits to linear and non-linear GK simulations (a la IFS-PPPL for ITG) for μ -tearing and ETG

FY16-17 Goals

- Expecting real-time current profile control
- Thrust 1:
 - Identify responsible k ranges for different transport channels in H-mode plasmas by correlating measured local transport trends (against v_e , I_p , B_T , γ_E , s, q, ...) with low-k and high-k measurements
 - Using Steady state transport analysis and perturbative experiments
 - Compare with gyrokinetic simulations to identify responsible instabilities
- Thrust 2:
 - Investigate flow shear scaling with Bt, Ip and lower ν^{\ast}
 - Validate (and update as necessary) TGLF against gyrokinetics for NSTX/NSTX-U parameters
 - Validate predictive transport simulations with 0D/1D confinement scaling for NSTX/NSTX-U/MAST

FY18 Goals

- Expecting rotation feedback control
- Thrust 1:
 - Identify responsible k ranges for different transport channels in L-mode plasmas by correlating measured local transport trends (against v_e , I_p , B_T , γ_E , s, q, ...) with low-k and high-k measurements
 - Using Steady state transport analysis and perturbative experiments
 - Compare with gyrokinetic simulations to identify responsible instabilities
- Thrust 2:
 - Investigate confinement scaling with rotation feedback control
 - Investigate e-ITB scenario scaling utilizing real-time current profile control
 - Use predictive transport simulations for FNSF/Pilot

Turbulence – What diagnostic should be used to measure?

- ITG χ_i , χ_e , χ_{ϕ} , D
 - driven by ∇T_i ; suppressible by ∇n , E×B shear (ion thermal transport often neoclassical)
 - $\delta n_e k_{\theta}\rho_s \sim 0.2$, $k_r\rho_s \sim 0$, isotropic eddies, $L_{\theta} \sim L_r \sim 5-8 \rho_s$ (BES, high-k)
- TEM χ_e , χ_{ϕ} , D
 - Driven by ∇T_e , ∇n_e ; suppressible by E×B shear, reduced by collisionality
 - δn_e Similar to ITG, maybe slightly higher $k_{\theta}\rho_s \sim 0.5$ +, especially electron heat transport (BES, high-k)
- KBM χ_i , χ_e , χ_{ϕ} (?), D
 - Driven by $\beta'=\beta \cdot a/L_p$; suppressible by E×B shear
 - δn_e ~similar to ITG, narrower k_{θ} spectrum (broader L_{θ}) (BES, high-k)
- ETG χ_e
 - Driven by ∇T_e , low s/q; suppressible by ∇n_e , Z_{eff} , E×B shear; weak dependence on collisionality
 - $\delta n_e k_{\theta} \rho_s \sim 10, k_r \rho_s \sim 0, \text{ anisotropic, } L_{\theta} \sim 3^* L_r \sim 0.5 \rho_s \text{ (high-k, ...)}$
- MT χ_e
 - Driven by ∇T_e , increasing s/q, sufficient β_e , peak around $Z_{eff}v_{ei}/\omega_{*e}\sim5$; suppressible by E×B shear
 - $\delta n_e k_\theta \rho_s \sim 0.2$, $k_r \rho_s$ larger, anisotropy opposite to ETG (maybe not BES, ...)
 - $\delta B_r k_{\theta} \rho_s \sim 0.2$, $k_r \rho_s \sim 0$, very broad, strongly ballooning, $\delta B/B_0 < 1\%$ (polarimetry of some sort?)
- BES and high-k are high priority for almost all modes (ITG/TEM/KBM/ETG) and are expected to be available
- Not clear what will be useful for microtearing, both δn and δB_r

Transport – What measurements are required to discriminate theoretical mechanisms?

- Local steady state transport coefficients vs. parameter scans
 TS, CHERS, TRANSP analysis
- Local perturbative measurements, flux-gradient relationships
 - Impurity seeding, ME-SXR
 - Heat/cold pulse propagation, ME-SXR
 - n=3 braking and 2nd NBI, CHERS, UF-CHERS
 - SGI, reflectometery
- What diagnostics are needed to validate transport models?
- Seems like biggest new diagnostic priority is identifying modes present through turbulence measurements
- What more transport tools do we need?

Same two thrusts for core flat region

- Identify instabilities responsible for anomalous transport (thermal, momentum, and particle/impurity)
 - Fast $\delta n_e (\delta T_e, \delta B ?)$ diagnostics for NSTX-U, > 2MHz required?
 - Test predicted transport with direct measurements of pert. transport
 - Upgraded reflectometry: can it access core in NSTX-U H-modes?
 - BES: SNR in core of NSTX-U, any capability to increase bandwidth?
 - Any potential for 1-2MHz+ fluctuation diagnostics other than δn_e
- Establish and validate reduced transport models for NSTX experiments
 - Belova HYM model to predict instabilities, validate mode structure with diagnostics, model predicted modes for NSTX-U, FSNF
 - Gorelenkov ORBIT model uses *AE eigenmodes to predict transport
 - α -driven instabilities may play a transport role in next-step devices, how do we model these?
 - Will conventional turbulence become important in core NSTX-U H-modes?

Core gradient region – diagnostic priorities

EXPECTING

- Profile and transport diagnostics: TS, CHERS, etc...., TRANSP
- Diagnostics for measuring turbulence, fast profile changes for direct perturbative transport measurements
- ME-SXR/Interferometry/Reflectometry(upgraded)
- BES
- High-k

NEW DIAGNOSTIC PRIORITIES

- Measure δB_r perturbations on outboard side ($k_{\theta}\rho_s \sim 0.05$ -1, $k_r\rho_s \sim 0$ +)
- Measuring continuous range of k_{θ} density spectra, 0.1<k_{\theta}\rho_{s}<30 (k_r~0+)
- For *AE studies, δn_e , δT_e , δB with sufficient bandwidth for radial/poloidal mode structures
- If conventional turbulence becomes important for r/a < 0.4, same fluctuation diagnostics needed as the outer plasma: high density, NBI attenuation may be an issue on NSTX-U

Same two thrusts for pedestal region (overlap with Boundary Physics)

- Identify instabilities responsible for anomalous transport (thermal, momentum, and particle/impurity)
 - 3D GPI
 - Doppler backscattering
 - Langmuir and magnetic probes
 - ...
 - Theory drift waves, P/B, paleoclassical
- Establish and validate reduced transport models for NSTX experiments
 - Traditional drift modes ITG/TEM/KBM/MT/ETG (?)
 - Peeling/ballooning (Snyder tests)
 - Paleoclassical (Callen tests)

Overlap with Boundary Physics

- SOL physics Midplane and divertor turbulence, zonal flows, L-H transition
- III-1. Measure and interpret energy and particle transport and turbulence in the Scrape-Off-Layer (SOL), and understand the linkage between SOL parameters and the peak heat flux to the divertor to develop means for heat-flux mitigation and control.
- III-3. Measure and understand **boundary plasma response to applied 3D magnetic field perturbations and other perturbations** designed to control edge plasma transport and stability.