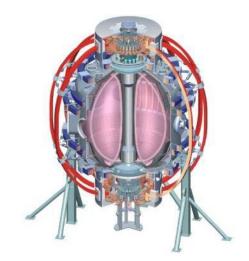


Supported by



T&T TSG Theory Brainstorming Topic Discussion

Columbia U CompX **General Atomics** FIU INL **Johns Hopkins U** LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

T&T TSG

B252 Feb. 22nd, 2012

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep

Goals of the Meeting

- Gather ideas for the upcoming theory brainstorming
 - Theories/ models experimentalists want
 - Experiments theorists want

Two Thrusts and Three Radial Regions Identified for the 5year Plan

- Two thrusts for the 5-year plan
 - Identify instabilities responsible for anomalous electron thermal, momentum, and particle/impurity transport in L and H mode plasmas
 - Establish and validate reduced transport models (0D and 1D) for NSTX-Upgrade plasmas
- Three spatial regions of concern in NBI H-modes relevant to NSTX-U and beyond
 - Core gradient region (r/a~0.4-0.9) inside pedestal where significant gradients in thermal plasma exist (→<u>microinstabilities predicted</u> <u>unstable</u>) (also applies to L-mode plasmas)
 - Core flat region (r/a<~0.4) approaching magnetic axis where thermal gradients become small (\rightarrow <u>microinstabilities predicted stable</u>) but significant fast ion pressure (P_{fast}/P_{tot}≤50%) (Alfvenic modes important) and turbulence spreading from r/a>0.4 may also be important
 - Pedestal (r/a>0.9) pedestal height plays an important role in global H-mode confinement (BP TSG)

Overview of Tasks of the Two Thrusts

- Identify instabilities responsible for anomalous transport (thermal, momentum, and particle/impurity)
 - Focus on most relevant scenarios: low ν^* H-mode plasmas; fully non-inductive plasma; ITER-relevant plasmas
 - Measure scaling of local transport (χ_e , χ_o , D_d, D_c) with relevant parameters (v_e , I_p, B_T, γ_E , s, q, ...)
 - Steady state analysis and perturbative experiments
 - Measure turbulence characteristics ($\delta n_e, \delta B_r, ...$) and scaling with parameters
 - k_{θ} spectra ($k_r \sim 0$) highest priority, most relatable to transport
 - <u>Multi-scale</u> spectrum of modes possible ($k_{\theta}\rho_s$ =0.1-20+), would like complete k-space coverage
 - Focus on parameter regimes where instabilities are expected to be isolated

 Use 2nd NB and 3D field coils as controlling tools
 - Compare with linear and non-linear predictions to discriminate theoretical modes
 - k spectra (coupled with synthetic diagnostics) and transport fluxes
- Establish and validate reduced transport models for NSTX-Upgrade plasmas
 - Explore 0D confinement scalings (v_e, β_e, I_p, B_T, ...) in NSTX-Upgrade parameter regime: higher Bt, Ip and lower ν* and project to FNSF/Pilot
 - Develop profile database for most relevant scenarios
 - Focus on developing reduced transport model for ion thermal transport
 - Reduced model, e.g. TGLF, against gyrokinetics for NSTX/NSTX-U parameters for low-k turbulence
 - Validating neoclassical transport models (pretty good prediction just using Chang-Hinton model for some NSTX shots)
 - Validate reduced ion thermal transport model for NSTX/NSTX-U/MAST
 - Will attempt to develop electron thermal transport model
 - Start with analytic fits to linear and non-linear GK simulations (*e.g.* IFS-PPPL for ITG) for µ-tearing and ETG
 - Reduced model against gyrokinetics for NSTX/NSTX-U parameters for µ-tearing and ETG

Draft Topics on Theory/Modeling Needs (I)

- Develop a suite of synthetic diagnostics integrated with numerical codes
 - To facilitate turbulence measurement and theory/simulation comparison
 - Identify instabilities
 - Validate theories/models
 - To assist further diagnostic development
 - BES, High-k scattering, PCI, reflectometry, polaritmetry and edge magnetic pick-up coils
- Develop interpretative and predictive capability for H-mode pedestal (r/a>0.9)
 - Empirical/semi-empirical scaling of pedestal height & width with "engineering" parameters (I_p, B_T, n_e, Z_{eff}) and/or theory parameters (ν^*, β, ρ^*)
 - Development and validation of pedestal height models with data (EPED1, any others)
 - Pedestal turbulence (Local and global gyrokinetic, fluid codes, e.g. GYRO, XGC, BOUT++, GTS)
 - Predict microstability (KBM,...) thresholds in pedestal (linear gyrokinetics, any others)

Draft Topics on Theory/Modeling Needs (II)

- Develop interpretative and predictive capability for NBI-heated H-mode coreflat region (r/a<~0.4)
 - Empirical/semi-empirical scaling of core T_e profile flattening with fast ion population, gradient, β_{fast} , etc...
 - Simulations of fast particle driven instabilities and associated transport
 - Development of reduced models (theory, semi-empirical, etc...) of χ_e , χ_ϕ and $D_{\rm j||}$ for use in predictive simulations
 - The effect of turbulence spreading from H-Mode core gradient region (r/a~0.4-0.9)
- Develop interpretative and predictive capability for H-Mode core gradient region (r/a~0.4-0.9)
 - Identify1D profile database for model validation from relevant discharges from NSTX/U
 - Test TGLF (or develop other reduced models) against linear and nonlinear gyrokinetics for NSTX-relevant parameters, especially for ETG and/or micro-tearing dominant regimes
 - Develop reduced models with global effects
 - May need global, multi-scale simulations due to large profile variations
 - Reconcile anomalous electron and momentum transport with neoclassical ion transport