

Supported by



## rtEFIT/ISOFLUX and beam control XMPs/XPs

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Dan Boyer, S. Gerhardt, D. A. Gates

1/20/2015



**Culham Sci Ctr** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

## rtEFIT/ISOFLUX XMPs and XPs

- **XMP:** Gap and squareness control with ISOFLUX
  - Reconfigure rtEFIT for NSTX-U and compare stand alone/`in the background' rtEFITs to offline EFITs
  - Introduce ISOFLUX control for short durations, tune gains one coil at a time, repeat for inner wall limited, SN, DN
- **XP:**  $\kappa$  vs. li, vertical stability optimization
  - Study achievable elongation as function of internal inductance
  - Vary internal inductance by changing flat top plasma current, ramp rate, beam power distribution
  - Maximize achievable elongation by optimizing vertical stability control
  - Determine primary cause of closed loop instability
    - Coil voltage limits, measurements/observer, latency, nonlinearity
  - Study benefit of SPAs as an additional actuator
  - First month?: Parts of this XP can be moved up if vertical stability is an issue early on

## **Beam control XMPs and XPs**

- **XMP**: Beam and β PCS control
  - Commission total and independent power control algorithm
  - Verify rtEFIT  $\beta_N$  (and Ii) calculation
  - Commission algorithms for control (pre-processing, PID, state-space)
- **XP:** Variation of q profile and li with beam tangency
  - TRANSP analysis of beam current drive
  - Identify scenarios that are good candidates for control
  - Effect of beam modulation, system identification for control design
  - First month?: Need profile diagnostics, phases without MHD
- XP: Combined β<sub>N</sub> and li control
  - Demonstrate control of  $\beta_N$  and li using beam power modulation
  - Reject initial condition errors, vary  $\beta_N$  at fixed Ii, maintain  $\beta_N$  and Ii as shape is changed
  - First month?: Need rtEFIT, PCS control of beams