## FY18 ASC Kickoff meeting

- Review high level results from FY17 milestone
- Define and organize tasks for FY18 milestone

# Early L-H transition enables low-l<sub>i</sub> scenario on NSTX-U

- L-H transition slows current diffusion toward axis
  - Edge pressure gradient increases edge bootstrap current
  - Higher temperature increases current diffusion time
- Stable elongation increases as l<sub>i</sub> decreases
  - Larger  $\kappa$  permits larger  ${\rm I_p}$  and pressure
  - Increases bootstrap current drive
  - Plot shows impact of earlier L-H timing
    - Vertical dashed lines: L-H & H-L transitions
    - I<sub>p</sub> ramp slower on NSTX-U than NSTX



## Increasing κ in NSTX-U ramp-up will require access to low-l<sub>i</sub>

- NSTX-U achieved a similar ramp-up shape to NSTX when I<sub>i</sub> = 0.8
- NSTX-U operated much closer to VDE limit in this condition
  - Consistent with increase in aspect ratio
  - Note: still optimizing control and EFC on NSTX-U
- Motivates lowering I<sub>i</sub> to expand κ range



# NSTX-U database provides guidance on target conditions for reliable L-H transition

- Why do discharges miss the L-H transition?
  - NSTX-U database of times that are diverted L-modes
    - 100 L-mode times and 68 L-H transition times = 168 entries
  - L-mode points:  $P_{NBI} \ge 3$  MW for at least 50 ms
    - Beam slowing down time ~ 25 ms
- Identified four criteria for reliable L-H transition  $\rightarrow$ 
  - No discharges miss L-H transition if all four criteria are met
  - $-P_{NBI} \ge 3MW$  can "power through" with only 3 conditions met

|                              | Total times | L-H times | L-mode times |
|------------------------------|-------------|-----------|--------------|
| Satisfy all 4 criteria       | 39          | 39 (100%) | 0 (0%)       |
| Satisfy 3 criteria           | 57          | 24 (42%)  | 33 (58%)     |
| Satisfy less than 3 criteria | 72          | 5 (7%)    | 67 (93%)     |

# Target conditions for a reliable L-H transition in the early ramp-up with $P_{NBI} \ge 3 \text{ MW}$

| Criteria                                                 | Details                                            |
|----------------------------------------------------------|----------------------------------------------------|
| n <sub>e</sub> > 1.25 × 10 <sup>19</sup> m <sup>-3</sup> | Line-averaged density is above a critical value    |
| V <sub>surf</sub> < 1.15 V                               | Surface voltage (EFIT02) is below a critical value |
| dr <sub>sep</sub> – 0.2 cm  < 0.6 cm                     | Shape is near double null (EFIT02) **              |
| Ο II / D <sub>γ</sub> < 1 (t = 0.15s)                    | Ratio of lower divertor filterscope channels ^^    |

\*\* Offset in dr<sub>sep</sub> (toward USN) may indicate a systematic error in computing dr<sub>sep</sub>

^^ Filterscope ratio is specific to NSTX-U. It is a general metric for the oxygen content of the plasma, which increases steadily following a boronization

- Criteria guide targets for early ramp-up
  - Fuel early to get desired n<sub>e</sub> target and divert near DN
  - Heat with  $P_{NBI} \ge 3 \text{ MW}$  (heating efficiency ~ 50%)
  - Then, pause or slow  $I_p$  ramp and fueling to get  $V_{surf}$  < 1.15V

# Vertical oscillation when diverting near DN hindered shot reproducibility



Two repeat shots (Except **204588** has larger P<sub>NBI</sub>)

Slight differences in shape at time of diverting lead to different behavior of vertical oscillations

**204118** has dither at 0.22s, then an L-H transition at 0.241s

**204588** does not have an L-H transition despite larger heating

Motion away from DN shrinks plasma volume, increasing  $V_{surf}$ , hindering L-H transition from 240 – 260ms

# Control and scenario solutions have been identified for mitigating the bobble



- "Kick" in dZ/dt may be driven by control algorithm transitions or errors in rtEFIT
- Overshoot of target inner gap leads to larger VDE growth rate
- Solutions pursued in the last week of FY16 operations
  - Flux reference changes from limiter to X-point within a single algorithm
  - Inner gap feedback improves consistency of diverting time and mitigates overshoot
  - Divert SN, then allow  $dr_{\mbox{\scriptsize sep}}$  feedback to alter the shape to near DN

See M.D. Boyer, 11.00041 (next poster)





#### 17-5 Analysis and modeling of current rampup dynamics in NSTX and NSTX-U

- High performance H-mode scenarios on NSTX-U are enabled by achieving broad current and pressure profiles and large elongation (κ > 2) via an L-H transition early in the ramp up phase.
- A database of NSTX and NSTX-U discharges demonstrates that the maximum elongation versus  $I_i$  operation space for the two devices is similar for  $I_i \ge 0.8$
- A corresponding database of VDEs shows the limit to the elongation by VDEs was more restrictive on NSTX-U than NSTX. NSTX-U achieved a similar elongation to NSTX by operating closer to the VDE stability boundary.
- Calculation of the open-loop VDE growth rate found that NSTX-U achieved stable operation at larger VDE open-loop growth rates compared to NSTX due to improvements to the active vertical position controller.
  - Consistent with achieving stable operation closer to the vertical stability limit.

#### 17-5 Analysis and modeling of current rampup dynamics in NSTX and NSTX-U

- The elongation at the time of diverting was restricted (κ < 2) in NSTX-U operations by the occurrence of vertical oscillations ("the bobble") as the discharge transitioned to a diverted shape.
- Potential sources of the initial vertical motion are a mismatch at the time of transitioning between control algorithms, and a poor convergence of rtEFIT.
- An overshoot in the inner gap size exacerbates the vertical position oscillations by increasing the vertical growth rate.
- Operational and scenario development improvements were identified that would reduce the probability of the deleterious oscillations.
  - Such as: removal of an algorithm transition within ISOFLUX at the time of diverting, improved rtEFIT reconstructions using multi-threading of the real-time calculation, an inner gap control algorithm that reduces overshoot and diverting with finite  $\delta_{rsep}$ .



#### 17-5 Analysis and modeling of current rampup dynamics in NSTX and NSTX-U

- A database of L-H transitions was created with a corresponding database of L-mode and dithering discharges with  $P_{NBI} > 3$  MW.
- A set of four criteria for the database was developed that excluded all of the L-mode times from the database. The criterion informs the target conditions for triggering the L-H transition during ramp-up.
- Discharges that disrupted with I<sub>i</sub> < 0.55 were found to be due to H-L back transitions. These discharges were found to operate below the no-wall stability limit.



## FY18 ASC Kickoff meeting

- Review high level results from FY17 milestone
- Define and organize tasks for FY18 milestone

### Elements of FY18-2 Milestone

- Develop TOKSYS model for ramp-up
  - Power supply model, wall model, free-boundary equilibrium
  - Test shape and vertical control algorithms in ramp-up
- TRANSP calculations of heating and current drive
  - Compare predictive calculations to existing data to identify acceptable assumptions and boundary conditions
  - Investigate impact of outer gap, density and NBI sources
- Inductive startup calculations using LRDFIT

 Optimize breakdown and early ramp-up for a range of conditions, including target shapes and dl<sub>p</sub>/dt

## Possible tasks with TOKSYS model

- Reproduce "the bobble" at time of diverting
  - Develop control that mitigates bobble
  - Extend to lower  $I_i$ , higher  $\kappa$
- Reproduce VDE with wall and power supply model Develop control that improves  $\kappa$  limits (I<sub>i</sub> = 0.4 0.8)
- Reproduce transition from limited (20ms) to diverted
  - Optimize control transition strategy, X-point and dr<sub>sep</sub> control
  - Develop scenarios and control that achieve an early time of diverting and an  $\rm I_p$  pause for the L-H transition
    - What is the impact of larger V<sub>loop</sub> and dI<sub>p</sub>/dt?
    - What is a good target shape and I<sub>p</sub> for the end of the startup phase?
    - How sensitive is the evolution to variations in the free parameters?

### Near-term tasks for TOKSYS development

- Vessel model in good shape.
  - Looking at a way to automate choice of wall resistance
    Similar format to LRDFIT
- Power supply model simple (voltage drop, time delay and slew rate)

- Dan is working on a more detailed model (PF supplies)

- Validation would need to be done.
- First simulations would have fixed evolution of li and betaN
- Git repository exists for eager users

### Possible tasks with TRANSP

- Reproduce NSTX-U (or NSTX) beam heated ramp-up – Identify reasonable transport models and boundary conditions
- Examine impact of neutral beam sources, density and outer gap on evolution of I<sub>i</sub> and q-profile in H-mode ramp-up
  - Consider MHD and fast-ion stability
  - What beams are best? Are there limits to rate that  $I_{\text{p}},\,\beta_{\text{N}},\,\text{etc}$  increase?
- Examine impact of NBI during L-mode phase

### Near-term tasks for TRANSP development

- Doohyun will take the lead
- Devon will provide cases of interest for ramp-up
- Francesca likes the different ramps with different heating



### Possible tasks with LRDFIT

- Investigate impact of using additional PF coils on NSTX-U
   What is the impact on the null quality and field index?
- Examine the limits to  $dI_p/dt$  in the startup phase
  - Requires larger voltage on power supplies
  - Larger dl<sub>p</sub>/dt tends to reduce null quality
  - Larger V<sub>loop</sub> increases wall currents, reduces null quality
- May get some experimental results from MAST-U collaboration
- Extend predictive LRDFIT to include plasma current – Either as filaments or a free-boundary solution (ISOLVER)

# MAST-U breakdown and ramp-up metrics similar to demonstrated NSTX-U scenario



**NSTX-U** 

ASC FY18-2 Milestone Q1, Devon Battaglia, October 12, 2017

# Plasma elongation in ramp-up was limited by large induced wall currents on NSTX-U

Current density (colors) and flux contours at 20 ms



```
NSTX-U
```

ASC FY18-2 Milestone Q1, Devon Battaglia, October 12, 2017

### Near-term tasks for LRDFIT development

• New NSTX-U calculations could be done

– What wall model should we use? Should we start to develop a wall model for NSTX-U-U ?

- Including Ip in predictive LRDFIT needs development
  - Can filament current be added either with a fixed distribution or with some criteria to put it in regions of low Bp?
  - Can ISOLVER be coupled to LRDFIT to evolve boundary and current distribution of a zero-β equilibrium?

### Next meeting

• Aim for mid – November (one status meeting per month)