FY18 ASC End of Q1

 Update on activities for FY18-2 milestone: "Develop simulation framework for ST breakdown and ramp-up"

- PAC meeting January 9-10
 - ASC dry run Wednesday, 12/20 at 9 AM

Elements of FY18-2 Milestone

- Develop TOKSYS model for ramp-up
 - Power supply model, wall model, free-boundary equilibrium
 - Test shape and vertical control algorithms in ramp-up
- TRANSP calculations of heating and current drive
 - Compare predictive calculations to existing data to identify acceptable assumptions and boundary conditions
 - Investigate impact of outer gap, density and NBI sources
- Inductive startup calculations using LRDFIT
 - Optimize breakdown and early ramp-up for a range of conditions, including target shapes and dl_p/dt

Typical NSTX ramp-up

LRDFIT modeling focus

TOKSYS modeling focus

TRANSP modeling focus

TOKSYS plans for ramp-up modeling

- Reproduce range of cases (bobble, dip, other) when transitioning from limited to diverted
 - Start with linearized equilibrium model, wall model, V_{loop}
 - ISOFLUX shape control
 - Hands on TOKSYS training in Dec/Jan
- Explore control and scenario solutions that might impact behavior at time of diverting
 - Minimize inner gap excursion
 - Divert LSN, move to DN
 - Fidelity of rtEFIT
 - Add offset to controller (rtEFIT is not in TOKSYS)
 - Changes to the wall (remove copper cooling tubes)

Pat presented slides

- Status of Framework for Simulation of Plasma Shape Evolution during Ramp-up
- Equilibrium for 204118 have been used to make linearized models for rampup
 - May want to try more resolution around time of diverting
 - Can interpolate between matrices in time-dependent solution
- First step would be to take the current for coils and see if reproduce the shot
- Francesca: TRANSP could be used to develop new equilibrium that deviate from the experiment
- Dan: Try different evolutions of beta, li

Extend TOKSYS model to earlier time

- Develop model of early ramp up
 - PCC control of limited shape transitioning to ISOFLUX
 - Explore control solutions for early diverting at high kappa
 - -GS evolve or interpolate between linear models
 - How quickly can we divert, raise I_D, get to large kappa?
 - How sensitive are the scenarios to variations in free parameters?
- Reproduce VDE with wall and power supply model
 - Develop control that improves κ limits ($I_i = 0.4 0.8$)
 - Less critical, but could contribute to milestone report

Near-term TOKSYS tasks

- Develop model of diverting with ISOFLUX control
 - Use linearized model for shape Pat has done this
 - Dan and Devon need to learn how to do this too
 - Wall currents (initialize assuming fixed V_{loop})
 - Meeting in late Dec/early Jan to have Pat train Dan and Devon
- Devon plans to write PCC and system algorithms for TOKSYS
 - Start in February, aim to complete by end of Q2

TRANSP modeling of ramp-up

- Perform TRANSP simulations of different NSTX-U or NSTX ramp-up cases
 - What choices of free-parameters best reproduce the experimental data?
 - Focus on cases with data with CHERS, MSE
 - Francesca has an NSTX case, Mario is using same case for EP analysis
 - Francesca and Dooyhun will show slides in January
 - Then do for an NSTX-U case
 - Free boundary gives insight into boundary changes that a controller cannot correct
- Provide insight into impact of NBI, dlp/dt, outergap
 - Optimize for broad P and J profiles
 - How does q-profile, pressure profile evolve?
 - Couple to MHD, EP stability codes?

Near-term tasks for TRANSP

- Devon will provide cases of interest for ramp-up to Doohyun
 - Devon will look for NSTX-U w/ beamline 1 that was trying for early H-mode
- Status update in January on NSTX and NSTX-U simulations

Near-term tasks for LRDFIT development

Revisit NSTX-U null formation calculations

- Is there any benefit to adding divertor coils to null formation scenario?
- How fast can dB/dt be increased? What is the impact on the null dwell time, null quality and field curvature evolution?
- Including Ip in predictive LRDFIT needs development
 - Can filament current be added either with a fixed distribution or with some criteria to put it in regions of low Bp?
 - Can ISOLVER be coupled to LRDFIT to evolve boundary and current distribution of a zero-β equilibrium?
 - Could this be done in TOKSYS?
 - Talk to Mike Walker ... he has time to help with NSTX-U. He has looked at ITER breakdown scenarios in TOKSYS

Next meeting

- Aim for end of January (mid Q2)
 - Francesca not available week 1/29

Status of Framework for Simulation of Plasma Shape Evolution during NSTX-U Ramp-Up

P. J. Vail and M. D. Boyer

ASC FY18-2 Milestone Update PPPL 12/07/2017

Several TokSys-compatible equilibria generated for Shot 204118

Formalism for linearized model development

Express the linearized circuit equations in state-space form for use with model-based control design tools

$$\delta \dot{\mathbf{x}} = \mathbf{A}(t) \, \delta \mathbf{x} + \mathbf{B}(t) \, \delta \mathbf{u}$$

Perturbed currents

$$\delta \mathbf{x} = egin{bmatrix} \mathbf{I_c} - \mathbf{I_c}_{eq} \ \mathbf{I_v} - \mathbf{I_v}_{eq} \ I_p - I_{p_{eq}} \end{bmatrix}$$

Perturbed voltages

$$\delta \mathbf{v} = \begin{bmatrix} \mathbf{V_c} - \mathbf{V_c}_{eq} \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}(t) = -\left[\widehat{\mathbf{M}}(t)\right]^{-1}\mathbf{R}$$
 Resistance matrix \mathbf{R} $\mathbf{B}(t) = \left[\widehat{\mathbf{M}}(t)\right]^{-1}\mathbf{V}$ Map from voltages \mathbf{V} to coils

Time-dependent mutual inductance matrix

$$\widehat{\mathbf{M}}(t) = \mathbf{M} + \mathbf{X}(t)$$

Vacuum mutual inductances

Effective mutual inductance due to plasma motion

Linearized models generated for Shot 204118

Ramp-up simulation: Interpolate between linearized models

