

Culham Sci Ctr

Robustness of improved error field suppression in long-pulse discharges

College W&M Colorado Sch Mines Columbia U Comp-X FIU General Atomics

INL Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL PSI

Princeton U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD U Colorado

U Marvland

U Rochester

U Washington

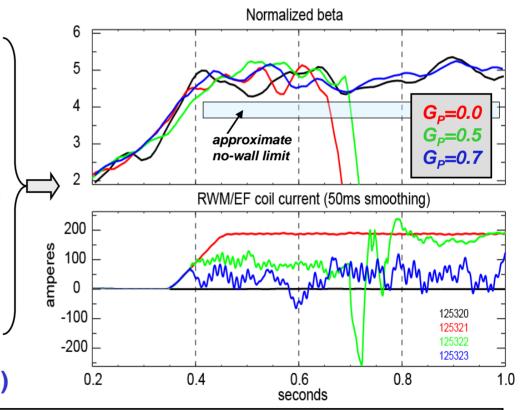
U Wisconsin

Jon Menard, PPPL

Advanced Scenarios and Control TSG
Group Review
Princeton Plasma Physics Laboratory
March 20, 2008

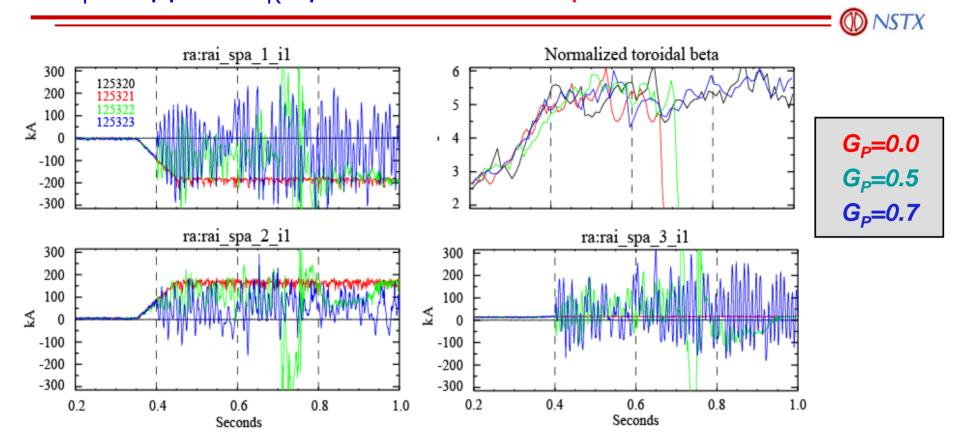
U St. Andrews York U Chubu U Fukui U Hiroshima U Hvoqo U Kyoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U Tokvo JAEA** Hebrew U loffe Inst RRC Kurchatov Inst **TRINITI KBSI** KAIST **POSTECH** ENEA. Frascati CEA, Cadarache IPP. Jülich IPP, Garching IPP AS CR

U Quebec


In 2007, using optimized B_P sensors in control system allowed feedback to provide most/all n=1 error field correction at high β

- Previous n=1 EF correction required a priori estimate of intrinsic EF
- Additional sensors → detect modes with RWM helicity → increased signal to noise
- Improved detection → higher gain → EF correction using only feedback on RFA

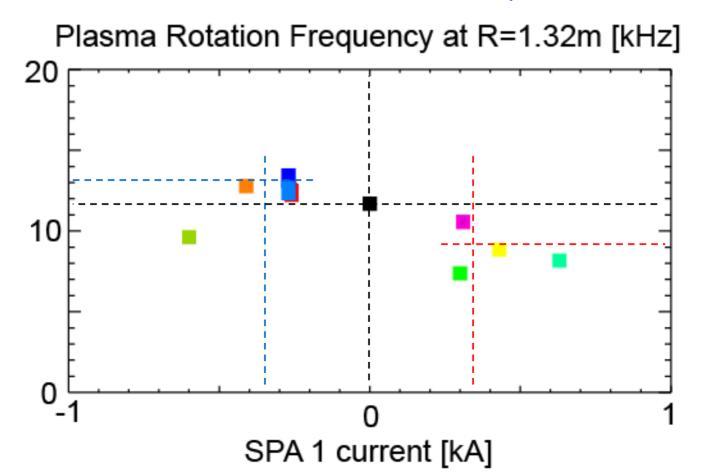
EFC algorithm developed in FY07:


- Use time <u>with minimal intrinsic EF</u> and RWM stabilized by rotation
- Intrinsic Ω_φ collapse absent in 2007
 → purposely apply n=1 EF to reduce rotation, destabilize RWM
- Find corrective feedback phase that reduces applied EF currents
- Increase gain until applied EF currents are nearly completely nulled and plasma stability restored
- Then turn off applied error field (!)

→ Use same gain/phase settings to suppress RFA from intrinsic EF **and** any unstable RWMs

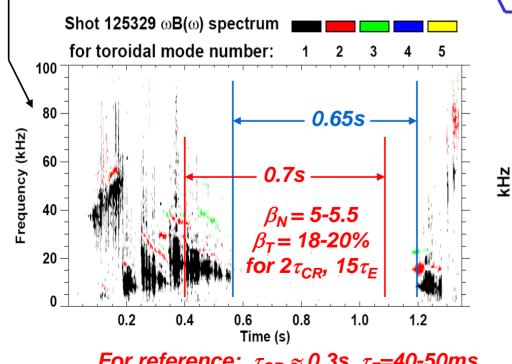
NSTX RF 2008 - Menard ASC EFC

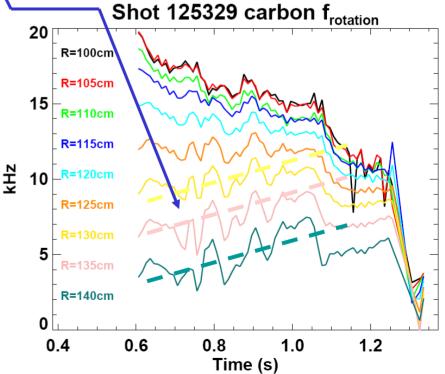
High gain, phase difference δ =270° between measured U/L avg B_P & applied B_R optimal \rightarrow can we optimize control further?


- Higher gain beneficial for improved RFA suppression G_P >> 1 possible?
 - Goal Factor of 2 gain increase w/o loss of controller stability
- Significant increase in AC control power evident at higher gain
- More optimal controller? LPF at SPA request to reduce noise...?

NSTX RF 2008 – Menard ASC EFC

Outboard Ω_{ϕ} changes by 30-40% with n=3 polarity flip




- Optimal n=3 current magnitude = 300-400A
- Coil shape data indicates VF coil (PF5) produces some n=3 EF
 - Need to assess if PF5 EF is consistent with empirical correction below

Simultaneous multiple-n correction improves performance (Optimized feedback control of n=1 B_P RFA + pre-programmed n=3 correction)

- Record pulse-length at I_P=900kA, with sustained high-β
- Long period free of core low-f MHD activity
- Plasma rotation sustained over same period
 - Core rotation decreases with increasing density ($f_{GW} \rightarrow 0.75$), but...
 - R > 1.2m rotation slowly <u>increases</u> until large ELM at t=1.1s

For reference: $\tau_{CR} \approx 0.3$ s, τ_{E} =40-50ms

Goal: Extend optimal EFC to wider range of scenarios and I_P Methodology/shot plan:

Optimize n=1 RFA suppression controller

- Start from 2007 reference, increase RWM control gain until system is unstable to determine highest stable value (5 shots)
- After implementation of LPF in RWM control algorithm, with gain at highest stable value, increase LPF time-constant τ_{LPF} from 0 to:
 - 1ms, 3ms, 10ms, 30ms, 100ms (2 shots for each τ_{LPF}) (10 shots)
- For τ_{LPF} where AC RMS control power is reduced by factor 2-4, increase gain again and determine highest stable value (5 shots)

Determine optimal n=3 EFC gain relative to I_{PF5} and/or I_P

- Scan plasma current and optimize n=3 EFC for each
- 900kA already optimized above → Use 700kA and 1.2MA targets
 - Assume n=3 EFC proportional to $I_P \rightarrow$ scan gain: x 1, 2, 0.5, 0, -1 (12 shots)

Implement gains in PCS EFC algorithm for all experiments (2 shots)

NSTX RF 2008 - Menard ASC EFC