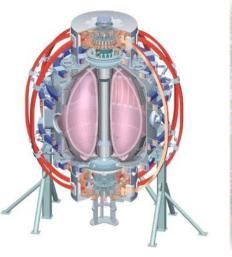


Supported by



XP-948: Confinement and NI Current Fraction Trends on the Path to High Toroidal-β

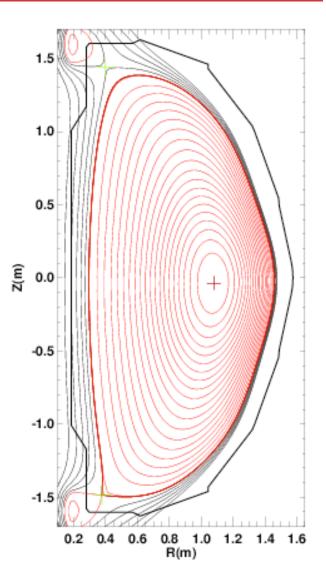
College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U Purdue U** SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S.P. Gerhardt, D. Gates

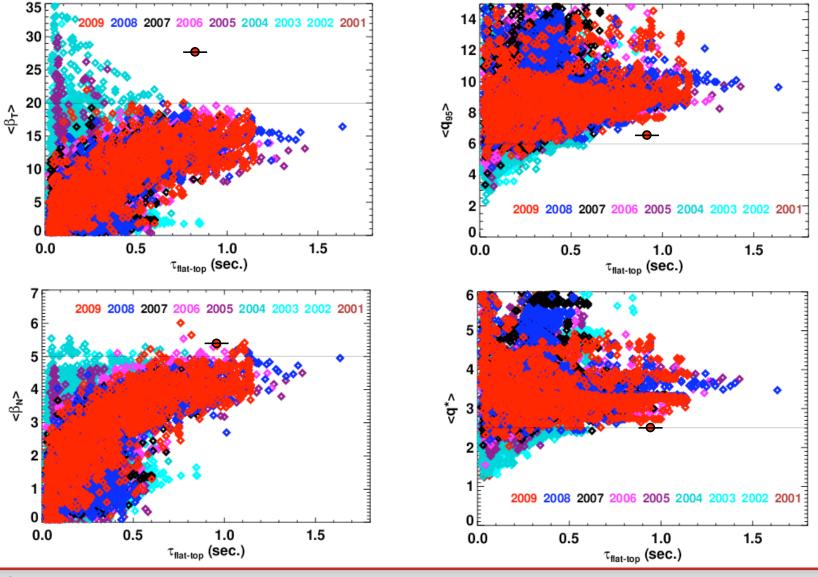
Advanced Scenarios and Control Group Review

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

XP-Goal: Extend High- κ Scenario to High β_T , in the Process Studying the I_P and B_T Scaling of NI Fraction & τ_E In This Shape


- Scheme
 - Reload and touch base with high-κ, high- β_P shot 133964, I_P =0.7, B_T =0.47, $\tau_{flat-top}$ =1.0 sec, $<\beta_N>=4.3$, $<\beta_T>=11$, $<\kappa>=2.55$, $<q^*>=4.6$, $<\tau_E>=36$ msec, outer gap =15 cm.
 - Lower B_T , raise I_P to operate at high I_N and β_T .
 - Do this is controlled steps, so that confinement trends can be revealed.
 - Optimize RWM control, fuelling, in order to achieve long pulse.
 - Ultimate goal is to run at I_P=1.1 MA, B_T=0.35 T, $\beta_T \approx 28\%$
- Deliverables
 - Explore the I_P and B_T dependence of confinement and NI fraction in this unique high- κ , low- I_i regime.
 - Establish the low-q*, high- β_N operating boundary in NSTX with Li deposition and RWM feedback.
 - Bonus: Impurity behavior as a function of I_P and B_T to complement XP-950
- Milestone R09-3: Characterize non-inductive current drive fraction versus elongation, proximity to beta limit, and plasma density
 - Provide I_P, B_T, β -limit, scaling of NI fraction

Target Shot is 133964, With I_P and B_T Scanning To High β_T


- 133964: κ ~2.5, I_P=0.7, B_T=0.47, high triangularity, high β_P for high NI current fraction.
- Drop B_T , raise I_P , in order increase β_T at constant β_N .
 - Table shows sequence of equilibria fixed at β_N =5.5.
 - Try to stay above q* of 2.5
- Goal is to sustain I_P=1100kA, B_T=0.35 T, β_T =28% for the duration of the OH capability.
 - 0.35 T chosen as the lower limit of MSE calibration

							WMHD
Case	Ip (MA)	BT (T)	betaN	betaT (%)	q*	q95	(kJ)
1	0.7	0.5	5.5	13.6	4.78	14	260
2	0.7	0.45	5.5	14.8	4.4	12.5	234
3	0.7	0.4	5.5	16.4	4	11.1	208
4	0.7	0.35	5.5	18.5	3.57	9.7	183
5	0.9	0.5	5.5	17	3.9	10.7	330
6	0.9	0.45	5.5	18.5	3.57	9.7	300
7	0.9	0.4	5.5	20.5	3.23	8.6	270
8	0.9	0.35	5.5	23	2.87	7.5	235
9	0.9	0.3	5.5	27	2.5	6.5	202
10	0.9	0.25	5.5	32	2.1	5.4	170
10	1.1	0.5	5.5	20	3.29	8.8	411
11	1.1	0.45	5.5	22	3	7.9	371
12	1.1	0.4	5.5	24.6	2.7	7.1	330
13	1.1	0.35	5.5	28	2.4	6.2	289
14	1.1	0.3	5.5	32	2.1	5.3	249
15	1.2	0.5	5.5	21	3.1	8.1	449
16	1.2	0.45	5.5	24	2.8	7.3	405
17	1.2	0.4	5.5	26.7	2.5	6.5	361
18	1.2	0.35	5.5	30	2.2	5.7	317
19	1.3	0.5	5.5	23.4	2.8	7.5	487
20	1.3	0.45	5.5	25.8	2.6	6.7	439
21	1.3	0.4	5.5	28.8	2.3	6	391
22	1.3	0.35	5.5	32	2.05	5.2	343

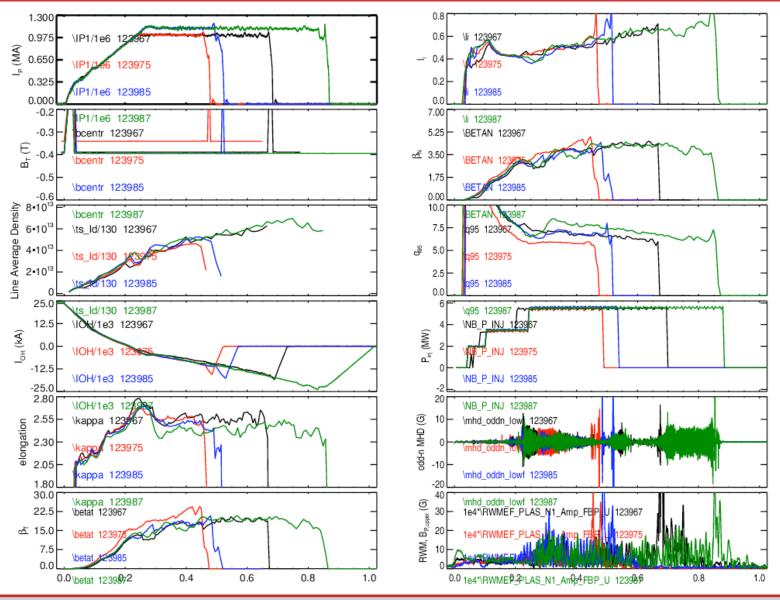
Target Equilibria Sits At Boundaries of NSTX Operating Space

()) NSTX

Key Question : How will Confinement Scale with I_P and B_T in the high-κ, Iow-I_i configuration

Reference shot 133964 has $<\beta_N>\sim$ 4, while ultimate target has $<\beta_N>\sim$ 5.5

τ_l	NSTX Scaling					TER_{98Pl} $\tau_E = B_T$	$B(y,2)$ $S^{0.15}I_P^0$	Scaling $^9P^{-0.7}$	$\beta_N = \frac{50\mu}{2I}$ $\beta_N = \frac{50\mu}{B_T^0}$	$\sum_{P=0}^{L} \frac{P\tau a}{P} B_{T}$ $\sum_{D=0}^{L} \frac{P^{0.3}a}{P} a$	$rac{ au_E}{B_T^{1.0}I_P^{0.6}P}$	$\frac{\tau_{E}}{B_{T}^{0.15}I_{P}^{0.9}P^{-0.7}}$
Г								WMHD	tauE (msec),	tauE, NSTX	tauE, ITER98	
	Case	Ip (MA)	BT (T)	betaN	betaT (%)	q*	q95	(kJ)	6MW input		Normalization	
	1	0.7	0.5	5.5	13.6	4.78	14	260	43.33	315	232	
- F	2	0.7	0.45	5.5	14.8	4.4	12.5	234	39.00	315	212	
- F	3	0.7	0.4	5.5	16.4	4	11.1	208	34.67	315	192	
	4	0.7	0.35	5.5	18.5	3.57	9.7	183	30.50	316	173	
	5	0.9	0.5	5.5	17 18.5	3.9 3.57	10.7 9.7	330 300	55.00 50.00	343 347	235 217	
	7	0.9	0.45	5.5	20.5	3.23	8.6	270	45.00	351	199	
	8	0.9	0.35	5.5	20.5	2.87	7.5	235	39.17	349	177	
	9	0.9	0.3	5.5	27	2.5	6.5	202	33.67	350	155	
	10	0.9	0.25	5.5	32	2.1	5.4	170	28.33	354	134	123987, with I _P =1100,
	10	1.1	0.5	5.5	20	3.29	8.8	411	68.50	379	245	B _T =0.4, only
	11	1.1	0.45	5.5	22	3	7.9	371	61.83	380	224	managed β_N =4.4 in
	12	1.1	0.4	5.5	24.6	2.7	7.1	330	55.00	381	203	
	13	1.1	0.35	5.5	28	2.4	6.2	289	48.17	381	181	2007
	14	1.1	0.3	5.5	32	2.1	5.3	249	41.50	383	160	
	15	1.2	0.5	5.5	21	3.1	8.1	449	74.83	393	247	
	16	1.2	0.45	5.5	24	2.8	7.3	405	67.50	394	226	
	17	1.2	0.4	5.5	26.7	2.5	6.5	361	60.17	395	205	
	18	1.2	0.35	5.5	30	2.2	5.7	317	52.83	396	184	
	19	1.3	0.5	5.5	23.4	2.8	7.5	487	81.17	406	249	
- F	20	1.3	0.45	5.5	25.8	2.6	6.7	439	73.17	407	228	
-	21	1.3	0.4	5.5	28.8	2.3	6	391	65.17	408	207	
-	22	1.3	0.35	5.5	32	2.05	5.2	343	57.17	409	185	
	shot	Ip (MA)	BT (T)	Comment			Power (MW)		Measured tauE (msec)	tauE, NSTX Normalization	tauE, ITER98 Normalization	
	129125	0.8	0.41		Ise Ever in N	STX	5		36	264	155	
	133964	0.75	0.41				6		35	259	178	
	133078	0.9	0.45	Basis shot for this experiment, high betaP Excellent Fiducial in 2009			6		45	312	195	
	132724	1.1	0.53	From n=3 EF experiment			5		52	243	162	
	132912	1.35	0.5			Wmhd discharge	6		55	269	163	
	123987	1.1	0.4				6		40	277	148	
	127985	1.2	0.45	q*=2.4 at	1.2 MA		6		44	257	148	



Different Goals, RWM Control, Dual LITER, Distinguish this XP from XP-727: Stability Limits with Strong Shaping at High- I_N (I)

- Focused on very high- I_N at high- κ .
 - $-\kappa$ =2.6, A=1.5 similar to equilibria in this XP.
 - I_P scanned from 1-1.2 MA, B_T scanned from 0.3-0.4 T
- Lots of current-ramp disruptions for B_T =0.30 & 0.35 T
- For discharges entering flat-top (B_T=0.4 T), large external modes (RWMs?) typically caused disruptions.
 - Modes grow rapidly in RWM sensors without rapidly rotating precursor.
 - Not a rotating TM that locks.
 - Edge USXR emission collapses after magnetic signature, but before core emission.
 - These modes are often suppressed with RWM feedback, which was not used if XP-727.

Different Goals, RWM Control, Dual LITER, Distinguish this XP from XP-727: Stability Limits with Strong Shaping at High-I_N (II)

Shot Sequence

List is structured so that important information is found on the way to the target equilibria.

•	Step 1: Reload shot 133964, I _P =700 kA, lower to B _T =0.45	(5 shots)
	 Touch base with high β_P shot, for connection to D. Gates NI current drive Repeat a few times while lithiumization is established. 	studies and milestone.
•	Step 2: Raise I _P to 900kA, Lower B _T to 0.45.	(2 shots)
	$-$ I _P and B _T waveforms from fiducial, but with high- κ shape and lithiumizatio	n.
•	Step 3: Lower B_T in steps to 0.4, (0.375?), 0.35	(8 shots)
	- Extend I_P in each condition in order to utilize full B_T waveform.	
•	Step 4: For optimal B_T in Step 2, raise I_P in steps to 1 MA, and 1.1 M	A. (8 shots)
	- Choose B_T where plasma gets through step 3 without failure.	
	– May be necessary to increase B_T for some steps of this sequence.	
•	Step 5: Fill in intermediate I_P , B_T combinations.	(10 shots)
•	Step 6: Time permitting, vary input power.	(remainder)
	 Pick stable I_P,B_T combination and try 3,4,5,6 MW cases 	
		Total: 33
		Could upp on oxtended day fo

Could use an extended day for contingency.

Questions:

Should we do a few cases with higher B_T (0.5, 0.55 T) in step 3, for study of τ_E , NI fraction scalings? Should we do a shot in the fiducial shape, but full lithiumization, in step 2 (two points of kappa scaling)? Should we consider using higher B_T for the current ramp (0.4 T), then ramping down (0.35T) ?

Notes on Machine Conditions and Diagnostics

- D_2 in both injectors 1 & 2.
- Li evaporation from 2 LITER Units
 - 200-300 mg/shot, on a 12.5 min. cycle
- β_N control could be useful.
 - Confinement likely dictates use of all 6 MW, but harmful transients could be avoided with β_N control.
- RWM Control.
 - Key system for controlling the stability
 - Start with gain P=1, τ_{FB} =1 msec, and increase gain if necessary.
- Spectroscopy
 - Provides controlled scan of $I_{\rm P}$ and $B_{\rm T}$ for studying metal accumulation.
 - Should have LoWEUS, SPRED, Bolometry to continue studies from XP-950

