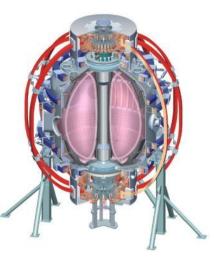


U.S. DEPARTMENT OF

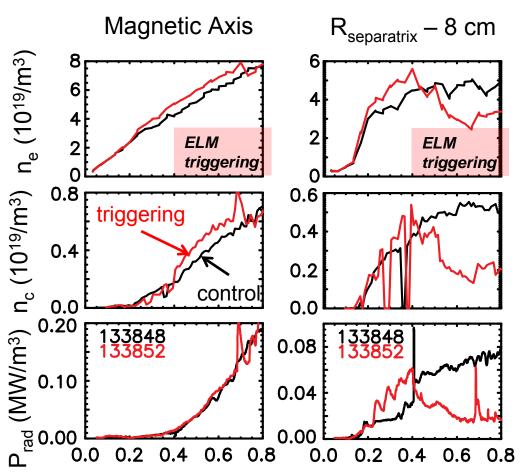

ENERGY Science

Combining n=3 ELM triggering with RF for edge and core impurity control

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois** U Maryland **U** Rochester **U** Washington **U Wisconsin**

J.M. Canik, ORNL

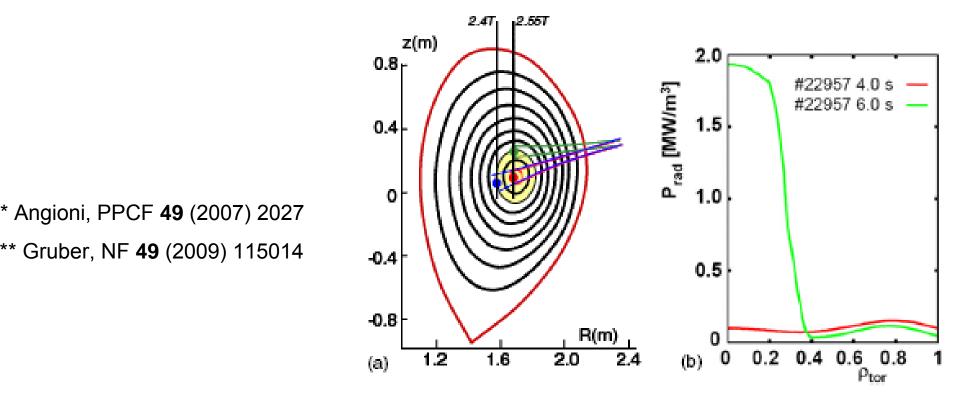
2010 NSTX Research Forum PPPL Dec 1-3, 2009



Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

ELM pacing with 3D fields has been used to control impurity/denisty rise in Li ELM-free H-modes

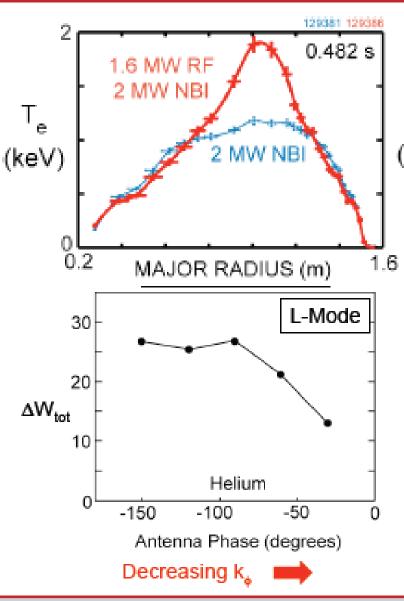

- 3D fields used to restore ELMs to high T_E lithiated discharges for particle expulsion
- Combined with partial SGI fuelling to improve particle control
- Successful in fully arresting line-averaged density and total radiated power
- But plasma is not stationary, profiles evolving
 - Edge electron/impurity density decreases in time
 - Core accumulation
 remains strong

Central ECRH mitigates core tungsten accumulation in AUG

Attributed to enhanced outward turbulent convection of impurities*

- Modes only unstable if $R/L_{Te} >> R/L_{Ti}$

Requires very central deposition (ρ<0.2)**



Run plan: use HHFW in increase Te(0) for central impurity control during paced discharge

- Rely on development of H-mode heating done elsewhere
 - Initially plan to use 180° phasing, since this has worked previously
 - Should have initial measurements of whether central impurity control is feasible
- Optimization of trade-off between conflicting needs
 - Outer gap for HHFW vs outer gap to minimize impurity sources
 - Trade NBI for RF power

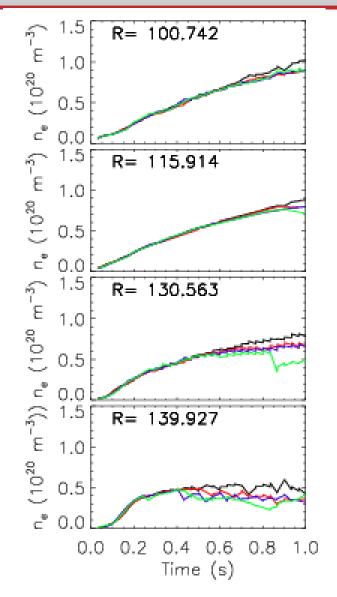
- May need to notch RF power to avoid ELMs
 - Opportunity to test RF ELM triggering

Elm pacing shot list

- Assume that HHFW has been made to work (raise Te) earlier in the overall shot list, or else concurrently (but separately)
 - Maybe do the ELM pacing during the last part of each discharge?
 - Assuming day has been reasonably successful, move to earlier triggering for the last few shots of the day to try for full-shot control
- Try to take it as easy as possible on the RWM coils

- Low frequency, low amplitude pulses

- Start at 10 or 20 Hz, using 1.5 kA, 10 ms pulses (compare to >60 Hz, 3kA, 4 ms pulses)
 - If not enough to ensure triggering, widen pulses or raise amplitude
 - Low frequency should avoid terrible things happening to plasma, so for now not planning on negative-going spikes


Elm pacing shot list

- Increase triggering frequency in increments of 10 Hz
 - 2-3 shots at each to readjust triggering (via pulse amplitude/duration)
 - Raise frequency until either density is arrested or engineers say stop
- Control shots mixed in, but important near end of day with "best" HHFW and ELM recipe
 - HHFW off, ELMs on
 - How much has HHFW affected core accumulation?
 - HHFW off ELMs off
 - What's the net win in particle/impurity control?
 - HHFW on ELMs off
 - Probably have a lot of these already, check for synergy between HHFW and ELMs, separate the two

Lower frequency ELMs combined with HHFW may be enough for density control

- Last year we achieved periods of ~300 ms with flat ∫n_edl with pulse frequency > 60 Hz
 - But this was do to edge ne ↓, core ne ↑ in time
- Freq scan shown to right
 - Control, 20, 40, 60 Hz
- Edge density starts decreasing in time fairly quickly in frequency scan
 - If HHFW does increase core particle transport, low frequency triggering should be enough for density profile control

