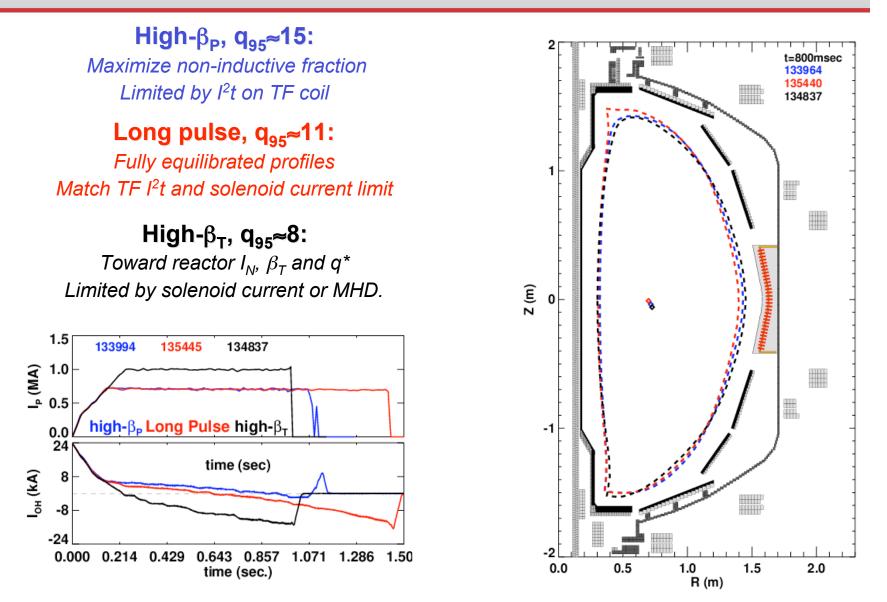

Supported by

Comments on Control & High-κ Scenario Development in 2010

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U ORNL PPPL** PSI **Princeton U Purdue U** SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**


S. P. Gerhardt

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Can (Simplistically) Divide the High-к Scenarios into Three Groups

Scenario Development

- High- β_P Scenario
 - Highly reproducible with 6 MW input, with minimal MHD trouble.
 - Occasional non-disruptive tearing made confinemtn degradation.
 - Plasma boundary was reasonably well controlled.
 - May be even better this year with new rtEFIT basis vectors.
 - Biggest limitation was the VERY large impurity accumulation.
- High- β_T & Long Pulse Scenarios
 - Reduced toroidal field causes all kinds of mhd.
 - Both operated at reduced power, and were disruptive if power was exceeded.
 - Could use β_N control.
 - Both had bottom gap ->0 as the OH current became large.
 - Consequence of the large elongation.
 - Could use better shape control.
 - Also had impurity problems...

Related Control Development

- ASC XP for combined X-point height and OSP radius control (1 day, Kolemen).
 - Should be final doing review in a few weeks.
 - Most useful for high- β_T and long pulse scenarios.
- ASC XP on first test of squareness variations (1/2 day, Kolemen).
 - Looks like the hardware interlocks will be completed for this run.
 - If the engineers get it ready, then we need to use it.
 - Could (potentially) improve any of the scenarios.
- MS XP & XMP on β_N -control (1/2 + 1/2 Gerhardt).
 - Would most benefit the high- β_T and long pulse scenarios.

- 2 days at forum for high-κ beam shot development, + 1/2 for squareness studies.
- Allocate 1 day to:
 - XP-1006: Development of High-Elongation Beam Heated Scenarios with Reduced Impurity Content and Increased Non-Inductive Fraction (Gerhardt, et al.).
- Allocate 1+1/2 day to:
 - Optimized control for very long pulse discharges (Kolemen, et al.)
 - Impact of squareness variation on high-κ discharges (Kolemen, et al.)
 - Exact breakdown between these TBD.

Suggested Goals in 2010

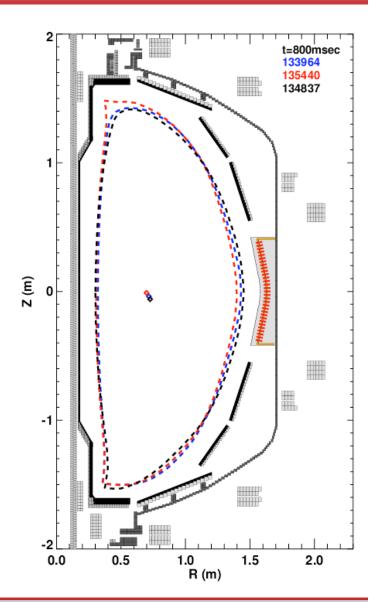
- Exploit LLD pumping
 - Best done in the **high-\beta_P scenario**, where q_{min} is somewhat elevated.
 - Increases tolerance for NBCD driving q_{min} down.
 - Big deal if we need to change the shape to increase the pumping...high- B_T is again most forgiving if we need to sacrifice some triangularity.

Test available means for impurity reduction

- Suggest to develop these in the *high-\beta_P scenario*, as they are most stable and closest to fully non-inductive.
- Suggestions include:
 - Low-frequency ELM pacing.
 - Modification to early discharge evolution (dr_{sep}, H-mode timing).
- Incorporate improved control techniques
 - β, OSP Radius, and X-point height control will likely show the greatest benefit in the *long pulse or high-β_T scenarios*.
- Study the effects of squareness variation
 - Best done in **long pulse or high-\beta_T scenarios**, where the impact on beta-limits can be addressed (for instance, use β -control to determine the beta-limit at different values of squareness).

Notes:

- Time allocation at time of forum: 2 days allocated to high-κ development + 1/2 days for squareness study...can these fit in the 2.5 day box?
- Assume that the following XPs are done, and use their output:
 - Early discharge optimization to reduce impurities (Menard)
 - $-\beta_N$ control XMP, maybe XP as well (Gerhardt)
 - Combined X-point height and OSP radius control development (Kolemen)
- If LLD cannot be run hot, need contingencies.
 - Can study impurity accumulation with LITER alone.
- May need to de-emphasize one of high- β_T or long pulse.
 - Similar issues with respect to MHD stability and boundary control.
 - If no hot LLD, then may permit additional time for these.
- Impurity control will be helpful for all scenarios.
 - Propose to develop it in high- β_P scenario, but can hopefully use it in other cases with minimal development.


Studied a Range of High-κ Discharge Scenarios in 2009

High-β_P, q₉₅≈15: Maximize non-inductive fraction Limited by I²t on TF coil

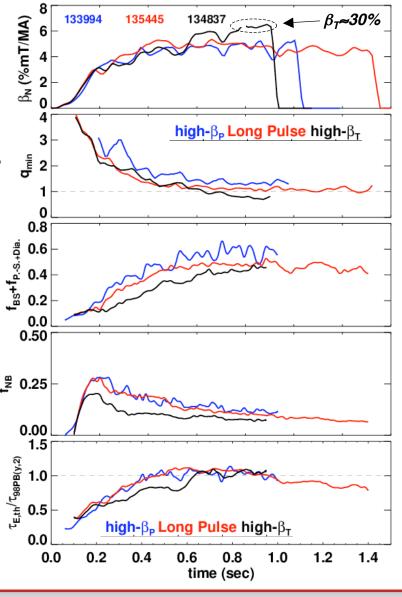
Long pulse, q₉₅≈11: Fully equilibrated profiles Match TF I²t and solenoid current limit

High-\beta_T, q_{95} \approx 8: Toward reactor I_N , β_T and q^* Limited by solenoid current or MHD.

<u>All configurations:</u> High-κ and δ (κ~2.7 & δ~0.8) Near double-null (ldr_{sep}l<3mm) (Shaping and improved power handling) Lithium Conditioning Dynamic Error Field Correction+RWM Control

PAC25-30

NSTX


Large Non-Inductive Fraction and Good Confinement Achieved Over a Range of q at High-κ

 $\beta_{N} \ge 4.5$ for all scenarios. 133994 β_N (%mT/MA) 6 Matches ST-CTF design point. f_{BS} approaching 55-60%. 0 - Matches ST-CTF design point. 3 Early f_{NB} >25%, decreases as density rises. • <u>م</u> 1 - Loss in f_{NBCD} partially made up for with f_{BS} . H_{98} ~1 in all cases. • 0.8 0.6 BS+fp.-S.+Dia - Further confinement improvements are 0.4 desirable. 0.2 0.0 1.5 0.50 133994 135445 134837 ..² 0.25 high-β_P Long Pulse high-β_T 0.0 0.00 24 1.5 time (sec) I_{oH} (kA) 8 1.0 -8

0.643 0.857

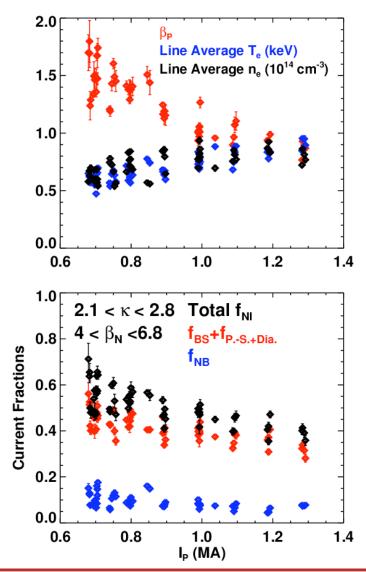
time (sec.)

1.071 1.286

-24

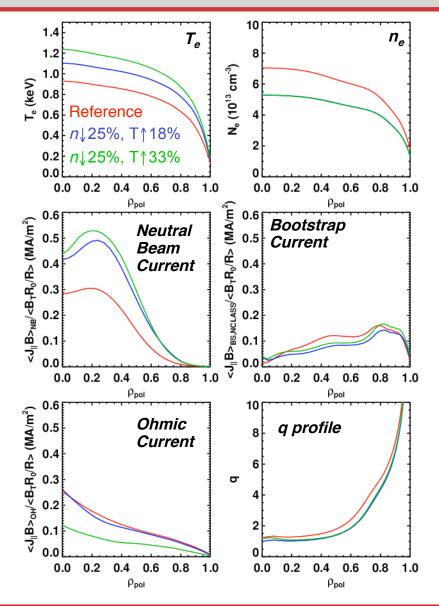
0.000 0.214 0.429

1.50


Present Configurations Are Limited to f_{NI}<70%

Loss of NB heating efficiency prevents operating at lower plasma current.

Near-term options for increasing f_{NI} in high-power NBI scenarios:

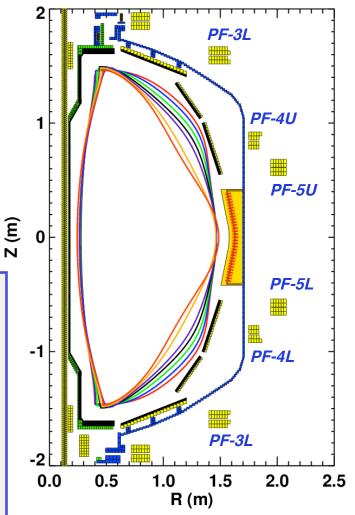

- Reduce density for increased NBCD.
 –Pumping with LLD.
- Increase the temperature for higher NBCD and bootstrap current.

⁻Confinement improvements with LLD and/or HHFW heating.

LLD Expected to Have Major Impact on Non-Inductive Currents

- Utilize profiles from high- κ , high- β_P shot.
 - Fix plasma boundary and $Z_{eff}=2$.
- Scales profiles to examine effect of f_{NI}.
 - Reference
 - f_{NBCD}=15% , f_{NI}=75%, H₉₈=1.1
 - Density ↓ 25%, Temperature ↑ 18%
 - f_{NBCD}=26% , f_{NI}=80%, H₉₈=1.1
 - Density ↓ 25%, Temperature ↑ 33%
 - f_{NBCD}=27% , f_{NI}=90%, H₉₈=1.3
- Increasing T_e and T_i by 25% in Z_{eff}=2 reference case yields fully non-inductive operation.
 - Z_{eff}=3 requires 40% increases in the temperatures.

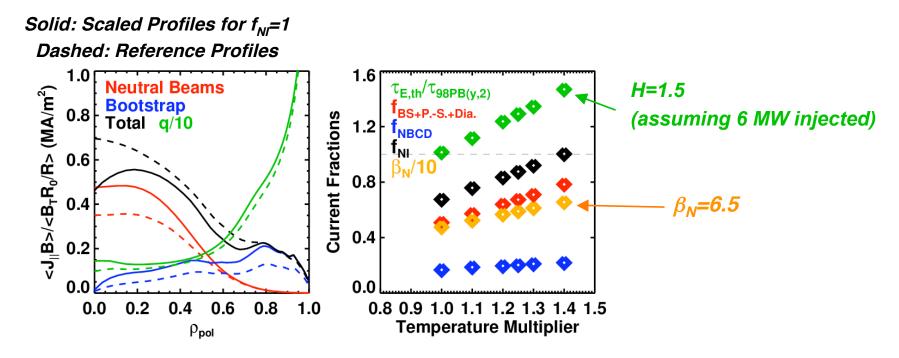
PAC25-32

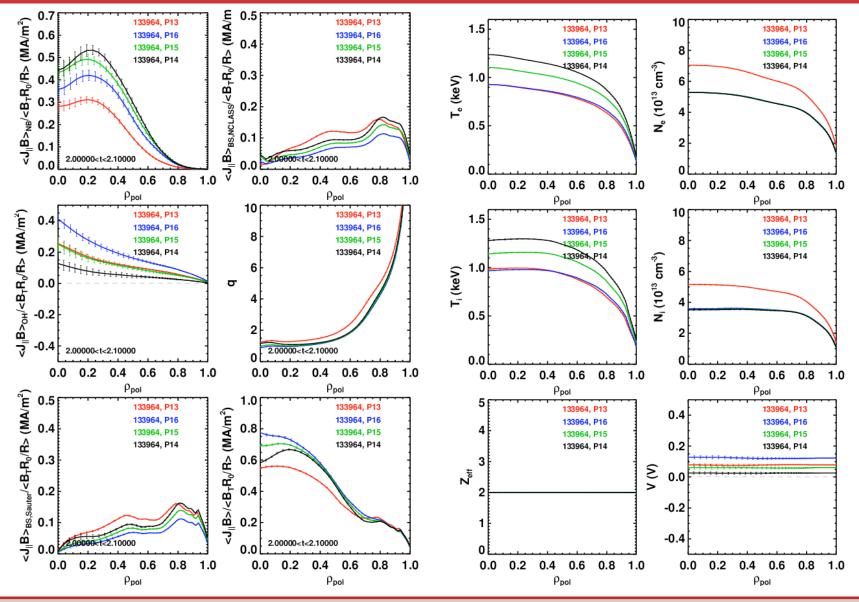

Control Development Will Extend the Range of Achievable Plasma Shapes by Using all PF Coils in Feedback Control

- Address ST specific issues.
 - Without inboard coils, control of the inner gap requires sacrifice of some other shape parameter.
- Need to develop control of high flux-expansion divertors.
 - Contributes to NSTX-Upgrade development.
- Control develop is the primary responsibility of our new post-doc Egemen Kolemen.

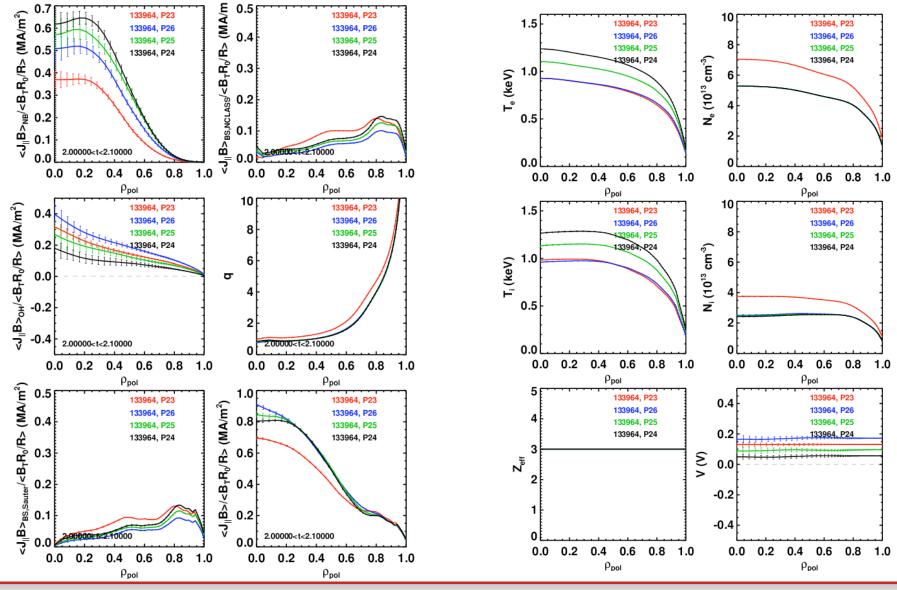
Boundary Control Plans in 2010

- Implement routine upper and lower outer strike-point control.
- Develop OSP radius and X-point height control.
- First test of squareness control.
- Develop realtime detection of multiple X-points for future snowflake divertor control (LLNL, GA, PPPL collaboration).

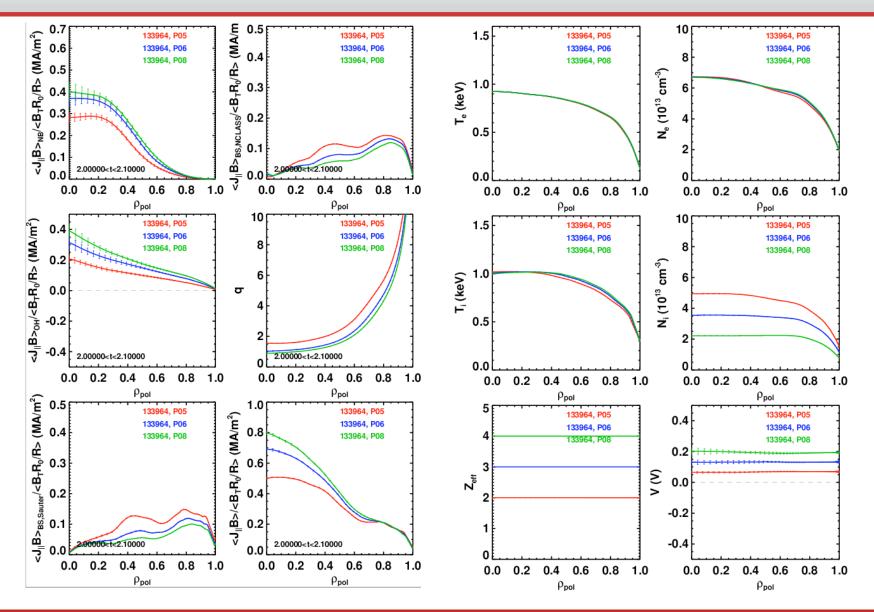



Fully Non-Inductive Operations Possible with Higher Temperature, Same Density

- TRANSP simulations with boundary and profile shapes from high- κ , high- β_P discharge 133964, Z_{eff} =3
- Scale T_e and T_i by the same factor, leaving densities unchanged.



• With Z_{eff} =2, required temperature increase is only 25%.


Reference Case Compared to Reduced Density & Various Temperatures, Z_{eff}=2, LEVGEO=8

Reference Case Compared to Reduced Density & Various Temperatures, Z_{eff}=3, LEVGEO=8

Z_{eff} Scans (LEVGEO=11)

NSTX

Issues To Be Considered For High-κ NB Heated Shots in 2010

- The 2011 milestone calls for operation at reduced collisionality.
 - Need to attempted to exploit LLD/Lithium pumping in 2010.
 - Will likely be tension between large shaping for stability and f_{NI}, and reduced shaping for pumping.
 - Reduced density, if achieved, will have unknown consequences
 - If the NBCD increases, it drives down q_{min} in a rather unfortunate way.
 - If RWM physics is more challenging, then high- β may be problematic.

Need to develop means to control the impurity content

- Z_{eff} =3 (or more) is common in high-elongation discharges.
 - Helps NBCD, but hurts bootstrap current and increases the loop voltage.
- Radiated power is uncomfortably large.
- Suspect that our 10-15% reconstructed current discrepancy is related to impurities.
- Need to incorporate impurity control techniques.
 - Low-frequency ELM pacing.
 - Early discharge optimization (separate XP by JEM)
 - Other? Divertor gas puff?
- Incorporation of improved control would benefit the scenarios:
 - X-point height and OSP radius for long-pulse and high- β_T scenarios.
 - OH leakage flux hurt the most in these scenarios, driving bottom-gap to zero.
 - XP height and OSP radius control development allocated time is separate XP by Kolemen.
 - $-\beta_{N}$ -control for long-pulse and high- β_{T} scenarios.
 - These cases used less than 6MW, high- β_{P} case took all 6 MW.
 - Separate XMP/XPs for this development in MHD TSG.
- Squareness is the final "unexploited" shape parameter.
 - Could impact global stability and transport.
 - Could impact ELM behavior.
 - PF5/4 mutual force interlock hardware should be prepared for this run, so that we can try this.

٠

٠

٠

٠