

Status of follow-on work from FY10 JRT

Columbia U CompX

General Atomics

FIU

INL

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

ORNL

PPPL

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

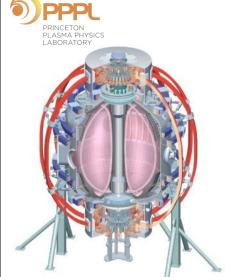
UCSD

U Colorado

U Illinois

U Maryland

U Rochester


U Washington

U Wisconsin

For the FY10 JRT research team

Annapolis, MD
April 13, 2012

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst TRINITI NFRI KAIST POSTECH ASIPP ENEA.** Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

Outline

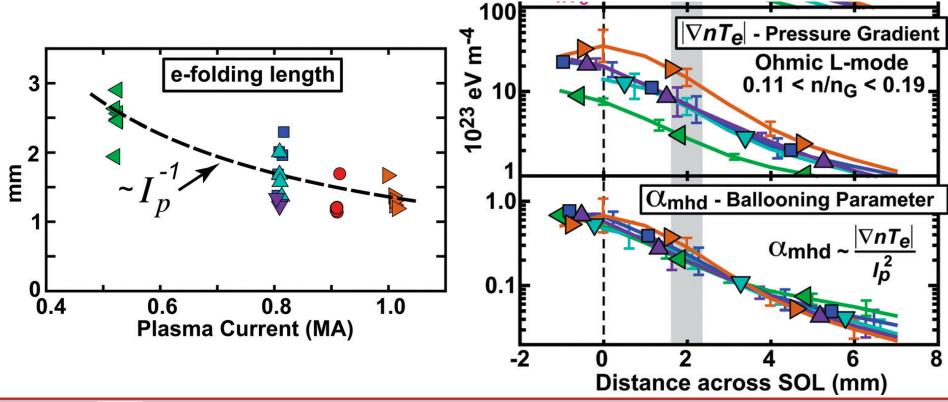
- Main experimental and modeling results from FY10 JRT, including LaBombard APS2010 Invited talk
- Follow on work: Goldston drift model (NF 2012)
- Follow on work: Eich evaluation of AUG and JET (PRL 2011)
- Follow on work: Makowksi APS 2011 invited talk on analysis of US database from FY2010 JRT, + upstream/downstream comparisons
- Follow on work: Gray FY10 JRT results from NSTX + Gan evaluation of effect of ELMs on heat flux profiles
- Follow on work: modeling with SOLT code (Lodestar)
- Follow on work in progress: various PSI2012 papers, including 2 invited talks (Maingi needs help for this!)

Summary of FY2010 JRT main experimental results

- Alcator C-Mod: EDA H-mode, L-mode, Ohmic
 - In FY2010 report: found a 1/I_p scaling of heat flux width near the separatrix in L-mode; H-mode scaling weaker because of far SOL
 - Just after JRT (APS 2010), reported 1/I_p in near SOL H-mode
 - Installed large number of new diagnostics
- DIII-D: ELMy H-mode with NBI or ECH
 - In FY2010 report: found a 1/I_p scaling of heat flux width near the separatrix in H-mode
 - Global stability limits (β_N ~ 5.5-6) encountered before edge (ELM) stability limits
- NSTX: ELMy H-mode and ELM-free H-mode
 - In FY2010 report: found a $1/I_p^{\alpha}$ scaling of heat flux width near the separatrix in H-mode, $\alpha \sim 1.6$
 - No appreciable B_t or P_{heat} dependence

Summary of FY2010 JRT main modeling results

- Modeling of Alcator C-Mod and DIII-D with UEDGE
 - Modeled similarity expt. discharges
 - C-Mod profiles matched with transport coefficients that increased wih radius
 - Drift effects important in both devices
- Modeling of Alcator C-Mod and NSTX with SOLT
 - In C-Mod, computed SOL width was ~ 1mm, less than data; single mode found unstable that may correspond to QC mode
 - In NSTX, trend of heat flux width decreasing with I_p reproduced, but not as strong as data: importance of X-point spreading identified
 - Transition from diffusive to convective radial transport identified
- Modeling of DIII-D and NSTX with XGC0
 - 1/I_p scaling of heat flux width with neoclassical transport alone
 - Heat flux widths 50% smaller than measured ones



Follow-on work in FY2011 and FY2012 - LaBombard

Alcator C-Mod

- APS 2010 invited by B. LaBombard (PoP 18 (2011) 056104): documented main results from C-mod part of FY2010 report
- Highlighted the unifying effect of $\alpha_{\rm MHD}$ ~ |grad(nT_e)|/I_p² ballooning parameter: $\alpha_{\rm MHD}$ clamped ~ 0.5 near separatrix, decreasing into SOL

Follow-on work in FY2011 and FY2012 to date: Goldston

Heuristic drift-based model derived (NF 52 2012 013009)

$$\lambda = 5671 \cdot P_{\text{SOL}}^{1/8} \frac{(1 + \kappa^2)^{5/8} a^{17/8} B^{1/4}}{I_{\text{p}}^{9/8} R} \left(\frac{2\bar{A}}{(1 + \bar{Z})}\right)^{7/16}$$

$$\times \left(\frac{Z_{\text{eff}} + 4}{5}\right)^{1/8} \text{ all units SI}$$

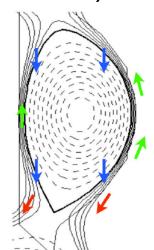
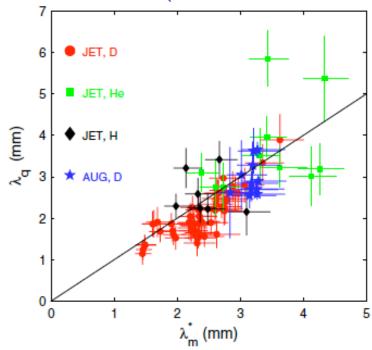


Table 1. Comparison with recent experimental data in deuteriur

	JET low λ	JET high λ	NSTX, 1 MA	DIII-D, 1 MA	C-Mod, 1 MA
$P_{\text{SOL}}(\mathbf{W})$	1.05E + 07	1.05E + 07	5.50E + 06	4.30E + 06	2.00E + 06
$B_{\rm t}$ (T)	3.00E + 00	2.00E + 00	4.40E - 01	2.00E + 00	5.40E + 00
K	1.68E + 00	1.68E + 00	2.25E + 00	1.75E + 00	1.65E + 00
a(m)	9.50E - 01	9.50E - 01	5.90E - 01	5.95E - 01	2.20E - 01
$I_{p}(A)$	3.00E + 06	1.20E + 06	1.00E + 06	1.00E + 06	1.00E + 06
R(m)	2.95E + 00	2.95E + 00	8.70E - 01	1.76E + 00	6.80E - 01
$Z_{ m eff}$	2.00E + 00	2.00E + 00	2.00E + 00	2.00E + 00	2.00E + 00
λ (exp't)	4.00E - 03	6.10E - 03	8.00E - 03	6.30E - 03	3.50E - 03
λ (model)	2.83E - 03	7.18E - 03	9.15E - 03	5.08E - 03	1.75E - 03


Follow-on work in FY2011 and FY2012 to date: Eich

ASDEX-Upgrade and JET:

- Eich (PRL 107 (2011) 215001) described new formula and $1/l_n$ scaling

$$q(\bar{s}) = \frac{q_0}{2} \exp\left[\left(\frac{S}{2\lambda_q f_x}\right)^2 - \frac{\bar{s}}{\lambda_q f_x}\right] \operatorname{erfc}\left(\frac{S}{2\lambda_q f_x} - \frac{\bar{s}}{S}\right) + q_{\mathrm{BG}}$$

 good agreement with Goldston driftbased model (NF 52 2012 013009)

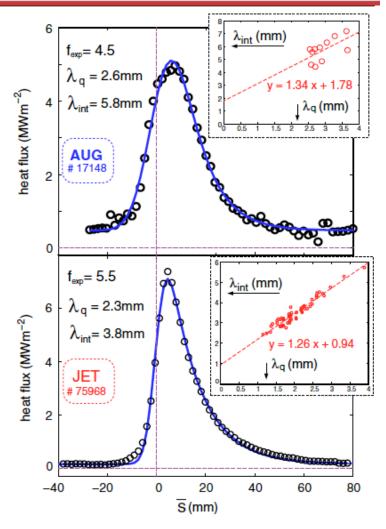
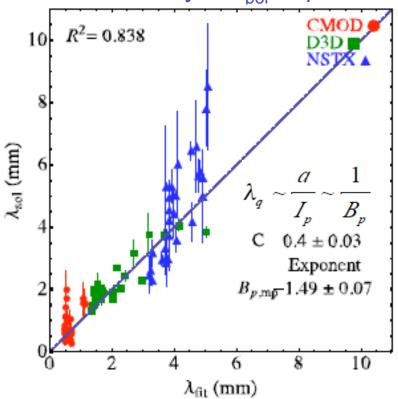
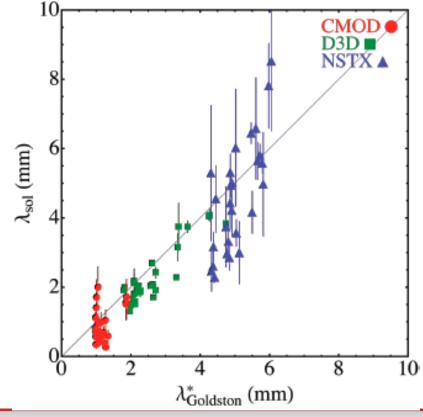


FIG. 2 (color online). Heat flux profiles measured on the outer divertor target and fits using Eq. (2). The inserts show the relation between λ_a and λ_{int} which are well expressed by a linear fit.

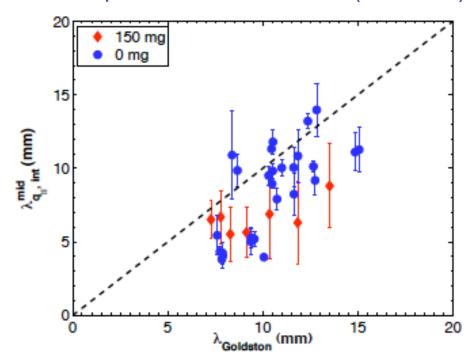

Follow-on work in FY2011 and FY2012 - Makowksi

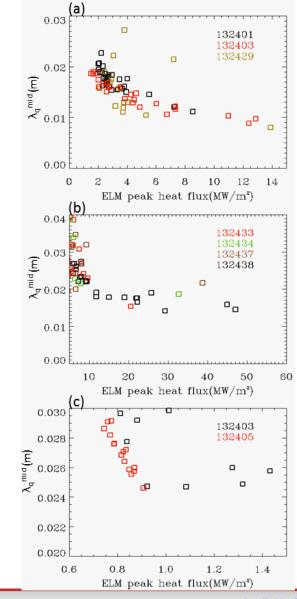

DIII-D

 APS 2011 invited by M. Makowski, that included data from all three devices with emphasis on DIII-D upstream measurements

– Multi-machine database with all three devices showed integral definition of heat flux width (Loarte or Eich versions) $\sim I_p^{-0.9}$, with

basically a B_{pol} dependence




Follow-on work in FY2011 and FY2012 - Gray, Gan

NSTX

 Effect of lithium on heat flux widths and peaks, c/w Goldston (draft NF)

 Analysis of profile evolution as a function of ELM type (draft PPCF)

Follow-on work in FY2011 and FY2012 - Lodestar

- Diffusive/convective transition boundary found in SOLT work being published (Myra, PPCF 2012)
- Studies of QC-mode discussed at TTF 2012 meeting
- Blobs, flows, and separatrix-crossing transport presented by Myra at TTF 2012 meeting

Follow-on work in FY2011 and FY2012 - PSI2012

- Eich (invited): combining European + US databases
- Maingi (invited): results from FY10 JRT, FY11 JRT, and possible relation between pedestal ballooning physics and SOL heat flux footprints
 - Need help from ECC to evaluate role of ballooning mode physics on profiles just inside and outside separatrix!
- Alcator C-Mod
 - Terry: heat flux footprints in I-mode
 - Whyte: ballooning physics and ITER SOL widths
 - Brunner: 'death ray' overpressure explained as Langmuir probe measurement phenomenon
- DIII-D
 - Makowski: further analysis + SOL KBM model
- NSTX
 - Gray: continuing analysis on NSTX data w/lithium

