

Supported by

Potential NSTX Contributions to JRT13

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa

U Washington

X Science LLC

U Wisconsin

Stefan Gerhardt, S. Kaye, J.-K. Park, R. Goldston: Princeton Plasma Phys. Lab.

J.-W. Ahn, J. Canik, J. Lore, R. Maingi, A.C. Sontag: Oak Ridge National Lab.

K. Gan Inst. Plasma Physics, Chinese Academy of Sciences

> ECC Meeting 4/13/12

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI **Chonbuk Natl U** NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep

Overview

 Original intention was that NSTX would collect targeted data during the operation period July 2011-February 2012.

- TF magnet failure during machine commissioning.

- NSTX last collected data in Oct. 2010.
- Internal NSTX discussions have identified the following potential contributions:
 - Heat flux measurements during type-V ELMs.
 - Further study of type-V ELM regime access conditions.
 - Occurrence of 'EHOs' and the potential to actively drive them.
 - Modifications to particle and heat transport w/ 3D fields.
 - Not RMP ELM suppression.
 - Search for I-mode in the database.
 - Other...EPH, Lithium application, IPEC+NTV

Type-V ELM Regime Heat Fluxes

- Type-V ELM regime is a small ELM regime with highperformance.
 - Observed in many high-performance, high- β_N discharges in NSTX.
 - Previous work showed that the energy loss during these ELMs was <1%.
 Could not tell how much less due to limit of equilibrium reconstruction.
- Work by K.F. Gan, J.-W. Ahn has resolved the divertor heat flux footprint using fast-IR.
- q_{peak} increased by ~20% typically, sometimes up to 50%.
- λ_q increased by 20%, with impulsive energy going to larger major radius.
- Compared to true ELM-free cases, λ_q increased by ${\sim}300\%$
- If extrapolable, this regime may be favorable for ITER/ FNSF.

Potential Contribution: Determination of the compatibility of this discharge regime w/ heat flux requirements of next-step devices. Theory question: Can we model the evolution of these ELMs with extended MHD?

Type-V ELM Regime Access Conditions

- If type-V ELMs have good characteristics, then we wish to know how these regimes extrapolate.
- Historically, these regimes are found at higher pedestal collisionality, in somewhat biaseddown discharges.
 - More recent work has found cases down to $\nu^{\star} {\sim} 0.5$
- Need to better understand the access conditions for these instabilities.
 - Triangularity and elongation.
 - dr-sep
 - Beta and Collisionality

Potential Contribution: Improved prediction of the existence regime of these ELMs, including projection to ITER or FNSF

Theory question: Can we model the linear stability of these ELMs?

Two Flavors of 'EHOs' Observed in NSTX 1: EHOs During Type-V ELM Regimes

Not suggesting that these are necessarily the same as the QH EHO, only that the are at the edge and have harmonics.

- The EHOs are apparently ubiquitous in the type-V ELM discharges.
 - Similar to the "HRS H-mode" in JFT-2M (Kamiya, et al, Nuclear Fusion 2003).

Two "Flavors" of EHOs Observed in NSTX 2: ELM Free Regime EHOs

n=6

EHOs During Lithium Conditioned ELM-Free H-Mode From J.-K. Park and R. Goldston

- First detected by Fred Kelly
- n=4-6 EHOs were observed in the edge by Mirnov coils tuned for low frequency and low amplitude.
- EHOs are clearest in some optimal operating regimes.
 - 4MW, 0.8MA, 0.4T
 - Would be nice to understand why.
- n=5 Generally amplitudes of EHOs are
 n=4 very low, without reduction of
 n=3 density increase.
- n=2 Probable FEC paper on this subject.

Two "Flavors" of EHOs Observed in NSTX 2: ELM Free Regime EHOs

n=6

n=5

n=4

n=3

n=2

n=1

EHOs During Lithium Conditioned ELM-Free H-Mode From J.-K. Park and R. Goldston

Potential Contribution:
 Understand if the two flavors of EHO
are the same mode?
 Can we get a more general
understanding of when large-amplitude
EHOs may exist?
 Understand the relationship to type-V
ELMs.
Theory question: ???

HHFW Antenna Might Be Capable of Driving EHOs

- First suggested by R. Goldston
- Scoping studies by J.-K. Park using IPEC

HHFW Antenna May be Able to Drive EHOs

- For a given toroidal mode number n, there is a field distribution that the plasma is most sensitive to.
- Compute the "overlap" of the applied field with the most sensitive field as a measure of efficiency.

Potential means of powering the antenna with best coupling to the higher toroidal mode numbers

HHFW Antenna

Computed By J.-K. Park w/ IPEC

Could be important for NSTX-Upgrade, and future devices that cannot naturally access EHOs

HHFW Antenna May be Able to Drive EHOs

- For a given toroidal mode number n, there is a field distribution that the plasma is most sensitive to.
- Compute the "overlap" of the applied field with the most sensitive field as a measure of efficiency.

Computed By J.-K. Park w/ IPEC

Potential Contribution:

Collaboration with other devices that might have antennas capable of this drive, including IPEC computational support.

Theory questions:

- Is this overlap criterion for antenna design appropriate?
- If so, for what frequencies?
- Can this be modeled w/ MHD codes?

Particle Transport Changes w/ n=3 Applied Fields

- Large 3D fields can trigger ELMs, but smaller 3-D fields can lead to increased transport.
 - Increased transport evidenced by the change in soft X-ray emission from the pedestal region.
 - Plasma response is determined by the time-scale of field penetration.
 - Unfortunately, no reduction in global impurity accumulation or radiated power.
- Short, high-amplitude pulses make interpretation challenging
 - Field spectrum is changing.
 - Overlap with MPTS times is infrequent.
- Potential future work:
 - Examine additional cases with lower amplitude, longer-duration 3-D field pulses (below ELM triggering threshold). Look for transport response to 3D fields.

Potential Contribution: Improved understanding of the underlying physics of RMP transport modifications.

Theory Questions: All the standard questions about RMP penetration.

J. Lore, et al., 2011 APS

Search for I-Mode in the Database

- NSTX has not yet identified any I-mode cases in the database.
 - But maybe we haven't tried enough?
- Simplistically, I-mode comes about when you raise the L->H threshold and then use strong heating power.
 - Hence the favoring of the unfavorable grad-B drift direction.
- There are some data sets with increased probability of success:
 - In the 2009 reversed- B_T campaign.
 - Other experiments where the L->H power is higher (high X-point,...)
- But no guarantees:
 - High-power L-modes in NSTX are very unstable due to too-large pressure peaking...will work against I-mode formation.
 - C-Mod I-modes are triggered by sawteeth.
 - NSTX essentially never runs with sawteeth.

Potential Contribution:

Additional examples of the I-mode operating space.

Theory questions:???

Other NSTX Contributions

- "Enhanced Pedestal H-Mode" is a high-confinement regime observed when there is a localized edge drag (Maingi, PRL 2010).
 - Results in improved thermal transport & very high confinement.
 - Typically triggered by an ELM (and that ELM can be triggered by 3D fields).
 - Could consider comparison to VH mode if those experiments got run-time on DIII-D.
- Lithium conditioning
 - DIII-D may test a Lithium dropper/slapper at end of FY-12 run, or maybe during FY-13.
 - If discharges meet conditions of JRT, then can compare to NSTX discharges.
 - NSTX ELM-free H-mode typically accumulate impurities, and don't meet the definition of "stationary".
- NTV Calculations
 - IPEC + NTV theory has become a reliable means of calculating NTV.
 - Needs 3D field coils, plasma equilibrium, profiles.
 - (Can be)/(Already is) used for NTV calculations related to QH-mode in DIII-D, C-Mod, ITER.