Boundary Conditions Used in NIMROD Helicity Injection Simulations

C. R. Sovinec,¹ E. B. Hooper,² and J. B. O'Bryan¹ ¹University of Wisconsin-Madison ²Lawrence-Livermore National Laboratory

Informal Discussion with NSTX-CHI Group May 17, 2012

Some slides are from ICC 2011 and Sherwood 2012. Also see Phys. Plasmas **18**, 094502.

Introduction: HIT and HIT-II were spherical torus (ST) experiments at U. WA designed to study coaxial helicity injection (CHI) current-drive.

- Unlike CHI in spheromaks, configurations with a conducting center column need an insulating absorber gap to allow steadystate operation_d(tor. flux)/dt →0.
- At large I_{INJ}/I_{TF} ratios, MHD instabilities are excited, and the current-density profile relaxes. **COMPUTATIONS**

• At smaller I_{INJ}/I_{TF} ratios, explored in the 24954-24971 and 26449-26476 series, for example, any relaxation is relatively weak. HIT-II results in these conditions show distinct scaling information.

• Our present HIT-II modeling focuses on these weakly relaxing cases.

meter

Absor

Region

Surface

Inner Conductor

Transformer

Tapered Injector

Region

Coils

All computations start from vacuum magnetic field.

- The initial poloidal flux distribution is computed from a set of external coils.
- The initial $I = RB_{\phi}$ is uniform, and its value is the prescribed I_{TF} .
- All simulated CHI dynamics are controlled by the absorber and injector boundary conditions and are outputs of the computations.

This cross-section shows the initial poloidal flux distribution, and the geometry of the domain as represented by a 30×70 conforming mesh.

HIT-II Modeling & BCs: At low- β , pressure has little influence on the 2D profiles, allowing simplified modeling.

• We model these discharges with the zero- β limit of resistive MHD.

$$\rho \left(\frac{\partial}{\partial t} \mathbf{V} + \mathbf{V} \cdot \nabla \mathbf{V} \right) = \mathbf{J} \times \mathbf{B} + \nabla \cdot \left[\rho v \left(\nabla \mathbf{V} + \nabla \mathbf{V}^T - \frac{2}{3} \mathbf{I} \nabla \cdot \mathbf{V} \right) \right]$$
$$\frac{\partial}{\partial t} \mathbf{B} = \nabla \times \left(\mathbf{V} \times \mathbf{B} - \eta \mathbf{J} \right)$$

- Mass density ρ is considered a uniform constant.
- With viscosity, tangential-V (flow) is set to 0 along all boundaries.
- The normal component of ${\bf V}$ is zero along the conductors and nonzero along the injector and absorber.

• In NIMROD, equations are solved in weak form. For all test vectors **A**, determine **B** such that

$$\int \mathbf{A} \cdot \frac{\partial}{\partial t} \mathbf{B} dVol = \int (\mathbf{V} \times \mathbf{B} - \eta \mathbf{J}) \cdot \nabla \times \mathbf{A} dVol + \oint \mathbf{A} \cdot \mathbf{E} \times d\mathbf{S}$$

• The mathematics allows specification of either tangential-**B** or -**E** along boundaries.

The NIMROD boundary conditions need to represent both the injector gap and the absorber gap.

• Voltage in the HIT-II experiment is applied across the injector, and physics determines the voltage along other paths.

- With NIMROD, we may either specify a tangential electric field (Neumann condition) along a gap or B_{ϕ} (Dirichlet condition).
- $E_t = 0$ along the conductors.
- Applying $E_t \neq 0$ along both gaps presumes knowledge of the rate-ofchange of flux as a function of time--not appropriate/practical.

This cross-section shows the initial poloidal flux distribution, and the geometry of the domain as represented by a 30×70 conforming mesh.

Applying a combination of the two possible magnetic-field boundary conditions is effective.

• For HIT-II modeling, we choose to apply E_t along the absorber and RB_{ϕ} , i.e. ΔI -value, along the injector.

• Resistive MHD determines **E** everywhere below the absorber.

- Outflow at the absorber is set to the $\mathbf{n}\cdot\mathbf{E}\times\mathbf{B}/B^2$ drift speed to avoid a resistive boundary layer (~surface current).
- Inflow at the injector is set to preserve plasma volume, i.e. avoid compression.
- If there is a mismatch in these specifications, B_{ϕ} along the absorber changes from its initial vacuum value. This represents current beyond the absorber gap, and we subtract this to obtain net injected current, I_{INJ} .
 - Experimental absorber arcs are analogous.

Boundary conditions specified at the two gaps are indicated.

<u>NIMROD results</u>: An example result shows the expanded flux distribution after applying voltage at the absorber and current at the injector.

- In the case presented at right, we set V=37 V at the absorber, and ΔI at the injector for 30 kA.
 - I_{TF} drifts from 495 kA to 516 kA.
 - Net I_{INJ} is 8.8 kA.
 - Final I_{p} =91 kA (>10× I_{INJ}).
- The final current density profile is a hollow toroidal layer.

• The voltage is well below the experimental values of 600-700 V. Resistivity in the computations is based on the peak observed T_e , and there is no sheath.

The final distribution of the 6.5 mWb of poloidal flux is shown at left, and contours of RB_{ϕ} are shown at right.

More detailed modeling is applied to NSTX startup.

• The system of equations includes temperature and numberdensity evolution.

$$\frac{3}{2}n\left(\frac{\partial}{\partial t} + \mathbf{V}\cdot\nabla\right)T = -nT\,\nabla\cdot\mathbf{V} + \nabla\cdot\left[\left(\kappa_{\parallel} - \kappa_{\perp}\right)\hat{\mathbf{b}}\hat{\mathbf{b}} + \kappa_{\perp}\mathbf{I}\right]\cdot\nabla T + \eta J^{2}$$

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{V}) = \nabla \cdot D\nabla n$$

- Transport coefficients are *T*-dependent: $\kappa_{\parallel} \sim T^{5/2}$; $\eta \sim T^{-3/2}$.
- Detailed modeling of the injector bank controls the injector voltage.
- The injector and absorber boundary conditions are swapped with respect to the HIT-II modeling.
 - Tangential-E is applied at the injector.
 - ΔI_{abs} is held at 0, presuming no absorber arc.
 - The resulting flux-change starts from the injector for more accurate transient evolution.

Boundary conditions for NSTX apply the circuit model and preclude drift of I_{TF} .

- Rate-of-change of toroidal flux equals V_{ini} V_{abs}
- Absorber-I corresponds to a constant I_{TE}
- T near the absorber is kept low to maintain high resistivity in this region.
- Discharge (injector) current measured by the change in RB_{ω} just above the injector slot
- Toroidal flux carried in by ExB flow at the injector and out by ExB flow at the absorber

r_{ini.min}

*rabs*max

r_{absmin}

Fusion Energy

• Equating flows of *vacuum* toroidal flux yields

r_{absmin}

The quantitative difference between the velocity boundary conditions used for HIT-II and NSTX is very small.

The HIT-II calculations equated plasma flow

- The two conditions differ by a weighting factor 1/R in the integrals
 - The resulting difference is O(d_{slot}/R) << 1
- Quantitative comparison of the plasma evolution found very small differences

The net toroidal-flux change in NSTX is << the flux injected at the bottom

Proaram

Pegasus injector modeling: The small size and 3D geometry of the plasma guns requires a different approach.

 Current drive is modeled as a small source region within the domain and not through a boundary condition.

• Ohm's law accommodates the source, applied in the vicinity of the experiment's guns (first configuration in Pegasus):

 $\mathbf{E} + \mathbf{V} \times \mathbf{B} = \eta \mathbf{J} - \mathbf{E}_{inj}$

- The applied source is parallel to the local magnetic field and has a Gaussian distribution in poloidal coordinates and in toroidal angle.
- Induced-**B** and **J** propagate Alfvénically along background-**B** (initially).

Effective applied \mathbf{E}_{\parallel} (half-max shown in blue) and the resulting current channel ($\lambda \simeq 1 \text{m}^{-1}$ shown in red)

Two non-standard boundary conditions are also used in the Pegasus modeling.

- Conductivity of the gun-heated channel with respect to background is critical, so temperature evolution and temperaturedependent resistivity are used.
- With Spitzer- η , fixed low-temperature boundary conditions preclude a conducting path to the walls.
- Insulating conditions with an auxiliary decay term, $-\alpha(T-T_{wall})$, allows the current to heat a path to the walls.
- An effective electrical wall decay rate is also used when advancing B_{ϕ} so that the net axial current of the channel does not compress toroidal flux.

Cross-section view of temperature early in time.

Parallel current later when $I_p = 26 \text{kA}$.