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Motivation for Current Profile Control in NSTX-U

@ Some of the next-step operational goals for NSTX-Upgrade include:

— Non-inductive sustainment of the high-3 spherical torus.
— High performance equilibrium scenarios with neutral beam heating.
— Longer pulse durations.

@ Active, model-based, feedback control of the current profile evolution
can be useful to achieve those stability and performance criteria.

@ Model-based control motivated by coupled, nonlinear, multivariable,
distributed parameter dynamics of system.

@ The q profile is related to the current profile in the machine and plays
an important role in the stability and performance of a given magnetic
configuration.

@ The value of the ¢gmin can be controlled by varying the current-drive
sources used = enables feedback control of the current profile.
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Model-based Control Design Approach

@ Our purpose is to convert the accepted and detailed physics based
models to a form suitable for control design.

@ The actual NSTX-U machine is replaced by the control-oriented model
during the iterative control design process:

NSTX-U

actuator

actuator control input
inputs

inputs . measurements
oriented

model

plasma ' plasma '
controller controller

(b) testing the controller

measurements

(a) controller design

@ We will be modeling for control and not for physical understanding!

@ The control-oriented model will need only to capture the dominant
effects of the current profile evolution.

@ Feedback control deals with various model uncertainties, adds
robustness in rejecting external disturbances, and ensures
repeatability of scenarios.
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First-Principles-Driven (FPD) Current Profile Modeling

@ We develop control-oriented, physics-based models for the
— Electron density profile
— Electron temperature profile — Plasma resistivity profile
— Non-inductive current deposition
@ Modeling of electron temperature admits different levels of approximation.
Ad-hoc transport models can be parameterized and tuned to data from
experiment or predictive simulations by higher-accuracy transport codes.
@ Empirical models take a “separation of variables” form, i.e.,
spatial-temporal dependence of plasma parameters is separated.
@ These control-oriented models are combined with the magnetic diffusion
equation to obtain the desired first-principles-driven (FPD) model.
@ Fixed 2D MHD equilibrium — Extension to variable equilibrium possible.
@ Model includes nonlinear coupling between different plasma profiles.
FPD modeling allows for further integration (e.g., rotation profile).
@ FPD models are adaptable to various tokamaks and applicable to
various equilibrium configurations and operating regimes.
@ FPD modeling approach arbitrarily handles trade-off between simplicity of
model and both its physics accuracy and range of validity.
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First-principles-driven Current Profile Evolution Model

@ In practice, the toroidal current density is usually specified indirectly by
the rotational transform 7 (or the safety factor ¢ = i), which is definedas:

qg=1/t=—d®/dV (1)
@ Using ® = 7B, 0p* and p = p/p», the g profile is expressed as:
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@ The evolution of the poloidal magnetic flux is given by
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where the parameters £, G and H are geometric factors pertaining to the

magnetic configuration of a particular plasma equilibrium.
@ The geometric factors are defined as
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First-principles-driven Current Profile Evolution Model

@ The boundary conditions are given by:
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where I(r) is the total plasma current.

@ Magnetic diffusion equation (5) is closed by combining it with
control-oriented models for electron density and temperature profiles,
plasma resistivity and noninductive current drive. In this way, we can
obtain the first-principles-driven model of ¢ (p, 1)

— Models not designed for physical understanding, i.e., meant to capture
dominant physics which affect input-output relationship of system.

— Controller only needs to know about physics relevant to design
objective.
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Control Actuators on NSTX-U

@ First actuator is total plasma current, which is controlled by poloidal
field (PF) coil system.

— By controlling total current inside last closed magnetic flux surface, internal
current profile can be modified through resistive diffusion.

@ Second actuator is neutral beam injection (NBI).
— NSTX-U is designed to have a second neutral beamline with three new
beam sources of more tangential injection.

— Together with the original beamline, the NSTX-U has a total of 6 NBI
beamlet launchers.

— Beamlet launchers can be configured to inject particles on or off axis.
@ Final actuator is plasma electron density, which is controlled by
gas-feed and pellet launchers.

— However, tight control of electron density in experiments is challenging due
to large recycling at walls.

— Electron density considered an uncontrolled but measurable input.
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Electron Density Model

@ Assume tight coupling between electron and ion species in plasma, i.e.,
T.(p,t) = Ti(p, 1) and n,(p, 1) =~ n;i(p, 1).

@ Assume control action employed to regulate electron density weakly
affects radial distribution of the electrons.

@ Electron density n.(p,t) is then modeled as:
ne(p, 1) = n™ (p)un (1) (7)

— " (p) is a reference electron density profile evaluated
at the reference time ¢, i.e.,

" (p) = ne(p. 1r) (8)

— u,(t) regulates time evolution of electron density.
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Electron Temperature Model: Heat Transport PDE

@ Assuming heat diffusion is dominant transport mechanism, electron heat
diffusion equation expressed as:

30 1 10 | GH? T,
3o [nT.] = ﬁ;@ﬁ PT (Xeneaﬁ> + 0., 9)
oT.
¢ = T,(1,0) =T, : 10
9 |50 0 (1,1) bdry(?) (10)

@ Thermal conductivity x. unknown, x, = f(T.,n., q,s) = k,, T,/n; q"s™,
0= v n 7. (11)

— Nonlinear optimization to determine constants:
N

min/, J= /tof {Za g (pi, 1) — Q(ﬁi,t)]z + B [T (piy 1) — Te(ﬁi,t)]z} dt

i=1
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Electron Temperature Model: Timescale Separation

@ Slowly evolving electron temperature profile evolution modeled as:

kr,(p, 1) [ 0 (p, 1) — pmf(Ptbytr)]
T.(p,t) = § XI(1)*Pror(t )”*n.e(/3 DN+ T2 (P, 1), 0 < p < Py (12)
0 (p, 1), b < p<1

— kr, is a constant, 7% (p, 1,) is reference electron temperature profile, p,; is
spatial location of transport barrier in plasma and «, v and X are constants.

@ Constants chosenasa=1,y=0.5and A = —1, i.e.,

2 (b ty) — T2 (pw, 1)

kr,(p, tr
0t 2 (puty)
T.(p,t) = 1(2)\/Pioe(t (13)
()M(;)OI() + Tfmf(ﬁzbytr)v 0 S /3 S ﬁzb
Tfmf(ﬁ’ tr)v P <p<1
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Total Injected Power Model

@ Total power P,,(t) expressed as:

Plot(t) == Pohm(t) +Paux(t) - Prad(t) (14)
@ Ohmic power expressed as:

Pop(t) = / 2o 00(p. 0V ~ RO, (15)

— Jjwor(p, 1) is the total toroidal current density,
— R is global plasma resistance, which is expressed as:

Ro=2mm/ [ |55 5]

where S denotes a magnetic surface within the plasma.
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Auxiliary, Radiative Power and Plasma Resistivity

@ Auxiliary power expressed as:
Paux(t = nbltot ZPnblk (16)

@ Radiative power modeled as:

Pmd( ) /de( )Z‘fdA (17)

where the radiative power density Q,., is modeled as
Qrad([), t) = kbremzeﬁ‘ne(ﬁa t)z TE(ﬁa t)a (18)
with Z being the effective average charge of the ions in the plasma.
@ Plasma resistivity 7(7,) scales with electron temperature as:

~ kép(p, tr)Z
( 7t) = (p’ )3/2 ’ (19)
where kg, is a constant.
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Auxiliary Noninductive Current Drive Modeling

@ Total noninductive current drive in NSTX-U is produced by neutral
beam injection and bootstrap current:

<jNI'B> (Ginpi - B> (js - B)

= (20)
By By By
@ Neutral beam current drive modeled as:
<j"bi ' B> ~ dep e(ﬁ, t)
1) = Knpi\ps Iy b)) = Pupi(t 21
B (9o1) = ki 7 5. 1) € s Pa) (21)

— ki is a constant and j%(p, 1) is reference deposition profile.

@ Bootstrap current drive expressed as (T, = T) [1], [2]:

(Jbs B) . kJeVRO oY on, oT,
Boo (p, )= ( ) ap 2£31T EE +{2£31+£32+Oé£34}ne o5 (22)
— L31(p), L32(p), L34(p), a(p) are function of trapped fraction and collisionality.

[1] SAUTER, O. et al., Physics of Plasmas (1999).
[2] SAUTER, O. et al., Physics of Plasmas (2002).
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Plasma Stored Energy Modeling

@ Under the assumption of the tight coupling between the electron and
ion species in the plasma, the stored energy in plasma is expressed as:

Wzkjev[ /p (zne@,tﬁe(ﬁ?mini(ﬁ,r)T,»(ﬁ >)le } (23)

which is a static mapping of the plasma stored energy.

@ For control design purposes, we employ a dynamic mapping of the
stored energy based on a zero-dimensional, approximate energy
balance equation:

aw
==

w
_Ploss+Pohm+Paux_Prad:_7+Ptot7 (24)
Tw
Plﬂl

where energy confinement scaling 7 is given by IPB98(y,2)

Tiv = 0.0562Hy L) "Ry a” > ndig' BY G AW kO T8 PO (25)

tot

where a is the plasma minor radius, n.9 is the volume average electron
density in 10"m=3, A,y is the effective ion mass number and « is the
plasma elongation, which is assumed constant.
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Magnetic Configuration Parameters and Electron

Density and Temperature Reference Profiles
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Fig. 1: Reference (1) magnetic configuration parameters, (2) bootstrap current
coefficients, (3) electron density profile and (4) electron temperature profile.
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Model Coefficients and Actuators
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Fig. 2: (1) Electron temperature, plasma resistivity, (2) neutral beam model coefficients.
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Electron Density and Temperature Profile Comparison
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Fig. 4: Plasma profile evolutions comparison: PTRANSP [(1),(3)], control-oriented model [(1),(4)].
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Noninductive Current Deposition Profile Comparison
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Fig. 5: Noninductive current deposition profile evolution comparison: PTRANSP [(1),(3)],
control-oriented model [(2),(3)].
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Net Power and Current Drive Fraction
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Fig. 6: (2) Net power across separatrix and L-H threshold power and (3) Current drive fraction.
@ Threshold power to enter H-mode is given by [1], [2]:

2
40.107,0.78240.037 10.772£0.031 0.975-0.08 p0.999-:0.101
Piresh = . [2.15e 50 By a R, (26)

eff

@ If net power through plasma surface > threshold power, plasma will enter
H-mode, where -
aw w

P =P(t) — — ~ —

ralt) = Purlt) = "

[11 MARTIN, Y. et al., Journal of Physics (2008).
[2] RIGHI, E. et al., Nuclear Fusion (1999).
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Poloidal Magnetic Flux Comparison - Time Traces
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Fig. 7: Poloidal magnetic flux evolution comparison.
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Poloidal Magnetic Flux Profile Comparison
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Fig. 8: Poloidal magnetic flux profile evolution comparison.
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Safety Factor Comparison - Time Traces
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Safety Factor Profile Comparison
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Status of Work

@ The nonlinear magnetic-diffusion PDE coupled with empirical models for
the electron density, electron temperature and non-inductive current drive
(neutral beams) has been already implemented in a Matlab/Simulink
using a numerical integration scheme.

@ The numerical integration scheme was also coded in C language in order
to run Simserver simulations during the implementation stage.

@ A code has been developed to extract significant data from NSTX-U
PTRANSP simulations and generate control-oriented model parameters.

@ Bootstrap current model and g-profile prediction in the outer region still
need work. More data is necessary for model tailoring and validation.

@ Improved control-oriented model expected by the end of the summer.

— Several issues need to be discussed.

@ We are ready to start working on applications that make use of the FPD
control-oriented model.

— Several issues need to be discussed.
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FPD Modeling: Topics to Discuss

@ Reference shot numbers to tailor and validate the FPD model?
@ Typical durations of discharges in NSTX-U?

— Shot 142301M21: 16 sec.
— Shot 121014P01: 1 sec.
— Shot 130356A01: 0.7 sec.

@ Should we use a different scaling for the current drives? Is data
available?

@ How good is the T, ~ T; assumption in the interested scenarios?

@ Should we use a different confinement scaling? Hog, > or ST?

@ How many neutral beam injectors available for actuation? All of them?
Can we group them as a function of their characteristics? Which beam
will have off-axis capability? Are simulations available? Energy limit?

@ Should we consider high-harmonic fast wave (HHFW) as actuator? Are
simulations/data available? Any other heating source or current drive?

@ How is density control achieved? Gas feeders or pellet launchers?
Effectiveness?
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Utilization of First-principles-driven, Physics-based

Models in Plasma Profile Control Applications

1. Feedforward control design:

— Actuator trajectory optimization: Achieve target plasma state evolution
throughout discharge by specifying actuator trajectory waveforms, with goal
of numerically supporting experimental effort of scenario development.

— Study effects different auxiliary heating/current-drive schemes (e.g.
deposition location) have on ability to achieve a certain plasma state.

2. Feedback control design:

— Track target plasma state evolution and reject effects external disturbances

have on plasma dynamics, with goal of running repeatable discharges.
3. Plasma state observers:

— Simulate model in real-time/faster-than-real-time as discharge evolving to
obtain current/future plasma state for feedback-control/disruption-mitigation.

@ Can be combined with real-time measurements of plasma state.
4. Control algorithm implementation and testing:

— Execute simulations to determine correctness of algorithm implementation in
Plasma Control System (PCS) as well as performance and robustness of
control algorithms before experimental testing.
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Plasma Profile and Parameter Control Components
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Fig.: Plasma profile and parameter control components.
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Physics-based Model of Plasma Parameter Evolutions

@ Evolution of plasma poloidal magnetic flux profile is given by:

op _ n(T) 10 (AAM(%) A <Jui-B>
o e T (GFGHZE | + RoHn(T,) L= =
R
2w o id L1
9P | =0 P | 5m Gl H
p=1 lp=1

@ Volume-averaged energy balance in plasma is given by:
£ = _E +Pohm<t) +Paux(t) - Pmd(t)
dt TE
@ Physics-based, control-oriented models for electron density and
temperature profiles, plasma resistivity and noninductive current-drive
sources (auxiliary and bootstrap) tailored to H-mode scenarios in DIII-D.
@ Using ® = 7B, 0p* and p = p/p», safety factor (q) profile expressed as:
o) = -2 A2 _Beor
d¥v 2md o /0p
@ Normalized plasma beta (5y) expressed as:
‘ o (IB¢,0 o 2<neTe>V
S v
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Model Parameters Tailored to DIlI-D H-mode Scenario
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Fig.: Model parameters tailored to DIlI-D H-mode scenario.

June 25, 2013



Model Prediction Comparison to Experimental Data |
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Model Prediction Comparison to Experimental Data |l
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Normalized Effective Minor Radius Normalized Effective Minor Radius Normalized Effective Minor Radius
(1) t = 2.5 sec. (2) t = 3.5 sec. (3) = 5.0 sec.

Fig.: Safety factor profile ¢(p) at various time instances. Note: experiment (solid) and simulated
(dash).
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Fig.: Plasma stored energy and normalized plasma beta versus time. Note: experiment (solid)
and simulated (dash).
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1. Feedforward Control Design

Machine Operator
. . Inputs
Desired Discharge Desired Plasma
Characteristics St Bl
[Pulse Schedule]
Machine
/-\ Plasma Control System
/ \ Feedforward Feedback
/ Actuator \ Actuator Actuator Model — based Tracking Current
. Trajectory + + Correction Error g Plasma State
K Trajectory O Feedback O
Optimizer Controller
Feedforward Roal — time Plasma State
Control Design Plasma Discharge Observer
[of f — line] Control
N, 2z
S — Actuator Real — time
Commands Measurements
Tokamak

Fig.: Plasma profile and parameter control components.
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1. Actuator Trajectory Optimization

@ Objective: Reach desired target safety factor profile ¢ (4, #;) and
normalized beta 8y (¢;) at time ¢; during flattop phase of discharge in
such a way that desired plasma state is as stationary in time as possible
by specifying actuator trajectory waveforms.

— Cost functional defined as:
() = Jss +Jg + Jpy

@ Constraints: Limits on solution of optimization problem.
— Actuator magnitude constraints: min/max plasma current, min/max gyrotron
power, min/max neutral beam power.
— Actuator rate constraints: min/max rate of change of plasma current.
— Plasma state constraints: min safety factor value, max normalized beta.
— Actuator-magnitude/state constraints: power across plasma surface > L-H
threshold power.
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1. Optimized Actuator Trajectories
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(7) Pnbi|5()R (t) . (8) Pnbi33.()L (t) " . (9) Pnbi330R
Fig.: Comparison of actuator trajectories: optimized and utilized in DIII-D shot
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1. Target State Achieved with Optimized Trajectories

—— Target
- = Experimental (147634)|
- - - Optimized
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(3) t =5.5sec.

1
0.0 0.2 0.4 0.6 0.8
Normalized Effective Minor Radius

0.2 0.4 0.6 0.8
Normalized Effective Minor Radius

(1) t = 3.0 sec. (2) t = 4.0 sec.
Fig.: Safety factor profile ¢(p) at various time instances. Note: target (solid), experiment

(dash-dotted), and simulated with optimized actuator trajectories (dash).
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Fig.: (1) Normalized beta versus time. Note: optimization target (solid), experiment (dash-dotted),
and simulated with optimized actuator trajectories (dash). (2) simulated L-to-H threshold and net

power through the plasma surface.
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1. Achieved Target State is Stationary in Time

Safety Factor
o N ©
o o G

@
o

@

5. 4.
—— Target
- = Experimental (147634)| 40
- - - Optimized 5 40 535
E E 30
3.0 N
320 M- 820 = -
v\""ﬁ_.‘ - e 15
1 1
3 4 3 4 3 4 5 6
Time (sec.) Time (sec.) Time (sec.)
(1) p=0.1 (2) p=02 (3)p=03
5 8.
5o 7.0{%
gast{ 5 |
g a0] 860
. 35 550 S i
R 830 PR A N = ALY PPy e e
~ R A A a5 4.0
2, 30
3 4 3 4 3 4 5 6
Time (sec.) Time (sec.) Time (sec.)
4) p=0.5 (5) p=0.7 (6) p=0.9

Fig.: Time trace of safety factor ¢ at various spatial locations. Note: target (solid), experiment

(dash-dotted), and simulated with optimized actuator trajectories (dash).
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1. Actuator Trajectory Optimization: Topics to Discuss

@ Definition of desired plasma state.
— Other important plasma parameters to include?
@ Definition of actuator and plasma state constraints.

— Other constraints necessary to include from a physics standpoint, i.e., onset
of MHD instabilities, etc?

@ Optimized actuator trajectories.

— Have you ever experimentally tried actuator trajectories similar to these,
particularly plasma current trajectory?
— For see potential of inducing MHD instabilities with actuator trajectories?

@ Plasma state evolution achieved with optimized actuator trajectories.
— Does L-to-H threshold power seem reasonable?
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2. Feedback Control Design

Machine Operator

Plasma Control System
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Characteristics State Evolution
[Pulse Schedule]
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(Lehigh University)

Fig.: Plasma profile and parameter control components.
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2. Feedback Control Design — H-mode

®

~

N

Electron Density (10'® m™)

w

Electron Temperature (keV)
o
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(@)

1.0

0.2 0.4 0.6 0.8
Normalized Effective Minor Radius

(3)

1.0

Fig.: Plasma parameter uncertainty ranges: (1) electron density, (2) electron temperature, and (3)
plasma resistivity. Note: nominal values (solid) and minimum/maximum values (dash).

@ Electron density and temperature profiles and plasma resistivity modeled
as a nominal profile plus bounded uncertain component.
@ Feedback controller designed to:

— Track target poloidal flux gradient 6(p, ) profile and stored energy E()

evolution.

— Maintain closed-loop system stability in presence of uncertainty in kinetic

plasma parameters.
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2. Implemented Control Architecture in DIII-D PCS
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Fig.: Schematic of plasma profile and parameter control structure in DIII-D PCS.
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Disturbance Rejection: Target State Achieved |

— Target
- - - Feediorward + Feedback]
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Safety Factor
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(1) = 2.0 sec. {FB—OFF} (2) t = 4.0 sec. {FB—ON} (3) = 5.5sec. {FB—ON}
Fig.: Safety factor profile ¢(p) at various time instances. Note: target (solid blue), feedforward +
feedback (dash red), and feedforward (dash-dotted black).
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Fig.: Plasma stored energy and normalized beta versus time. The shaded gray region denotes
when the feedback controller is not active. Note: target (solid blue), feedforward + feedback (dash
red), and feedforward (dash-dotted black).
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2. Disturbance Rejection: Target State Achieved Il
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Fig.: Time trace of safety factor ¢ at various spatial locations. The shaded gray region denotes
when the feedback controller is not active. Note: target (solid blue), feedforward + feedback (dash

red), and feedforward (dash-dotted black).
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2. Disturbance Rejection: Actuator Comparison
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Fig.: Control actuator trajectory comparison.
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2. Reference Tracking: Target State Achieved |
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Fig.: Safety factor profile ¢(p) at various time instances. Note: target (solid blue), feedforward +
feedback (dash red), and feedforward (dash-dotted black).

1.4 4.0
1.2
™ vh
= T
= 1.0 30 "l’/‘, T T
<08 = o i v e
3 et akiet, e o
206 e s bl i v = A v T e Sl
S g4 o 20] . 2
! — Target A —— Target
0.2 Feedforward + Feedback - Feedforward + Feedback|
‘‘‘‘‘ Feedforward <= = Feedforward
0.0 1.0
1 2 3 5 6 1 2 3 4 6
Time (sec.) Time (sec.)
(E (2) By

Fig.: Plasma stored energy and normalized beta versus time. Note: target (solid blue),
feedforward + feedback (dash red), and feedforward (dash-dotted black).
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2. Reference Tracking: Target State Achieved Il
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Fig.: Time trace of safety factor ¢ at various spatial locations. Note: target (solid blue),
feedforward + feedback (dash red), and feedforward (dash-dotted black).
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2. Reference Tracking: Actuator Comparison
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2. Current Profile Evolution Model — L-mode

@ Empirical scaling laws are used for density, temperature, and
non-inductive current drive

o Density: |
n(ﬁ, t) = nﬂroﬁle(p)ﬁ(t) (28)

o Temperature:
T(p,1) = kr, Tgmﬁle%lt@ 2

@ Non-inductive current drive:

G- B) o Pion(0) /Te(p, 1)
Bao (p,1) —C(P)T (30)
1/2p5/4
L) 17(;)(,)52‘” (31)

@ Bootstrap current is neglected.
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2. Current Profile Evolution Model — L-mode

@ Resulting model:
90 L 0%0 00
ot

with boundary conditions:

= —ksus(1)

where

(Lehigh University) PPPL Work Meeting
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2. Magnetic Control Architecture in DIII-D PCS
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@ Feedback portion of controller interfaced with real-time EFIT (rtEFIT)
equilibrium reconstruction code for magnetic profile control.
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2. Input Disturbance Experiment - Scenario

@ Feedforward Actuator Trajectories: Shot #145477
@ Target Profile Evolution: Shot #145477

@ Artificial Disturbances: -0.15MAin [,, -0.5 MW in P, (Disturbance I)
0.15MAin I,, 0.5 MW in P,, (Disturbance II)

Disturbance | Disturbance Il
0s 1s 2s 3s 4s 5s
1 [T I R I (IR R R R N |
I Feedback on I
Feedback on Feedback off Feedback off
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2. Input Disturbance Experiment - Time Traces
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2. Input Disturbance Experiment - Profiles
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2. Input Disturbance Experiment - Actuators

Plasma current (MA)
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2. Target Tracking Experiment - Scenario

@ Feedforward Actuator Trajectories: Shot #146411
@ Target Profile Evolution: Shot #145477
@ Artificial Disturbances: None

Non-zero reference applied

Os 1s 2s 3s 4s 5s
1 [T [ T I N I | | I TR [ R B |
Feedback on

Feedback on Feedback off

(Lehigh University) PPPL Work Meeting June 25, 2013 54/82



2. Target Tracking Experiment - Time Traces
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2. Target Tracking Experiment - Profiles
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2. Target Tracking Experiment - Actuators

Plasma current (MA)
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2. Feedback Control Design: Topics to Discuss

@ Control performance goals, robustness requirements

@ Demonstrations for controller qualification (disturbance rejection,
tracking, etc.)

@ Available actuators, capabilities of existing dedicated controllers
@ State and actuator constraints
@ PCS implementation
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3. Plasma State Observers
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Fig.: Plasma profile and parameter control components.
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3. Plasma State Observers

u X=f(x,u) y
y=h(x,u)

& C

fc=f(fc,u,r)+uZ

¥ =hEu)

L
L=

@ Core of observer is control-oriented, first-principles-driven model [1, 2, 3].
@ Observer filters measurement noise not consistent with physics (model).
@ Gain L regulates tradeoff between model prediction and measurement.

[1]1OU, Y., WALKER, M.L., SCHUSTER, E., FERRON, J.R., Fusion Eng. Des. (2007).
[2] IN, Y., SCHUSTER, E., OKABAYASHI, M., NAVRATIL, G.A., SABBAGH, S., ... (RWM)
[3] FELICI, F. et al., Nuclear Fusion (2011).
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3. Plasma State Observers: Topics to Discuss

@ Availability of real-time measurements.
@ Measurement sampling times and sensor quality.
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4. Simserver Simulations

DIII-D Tokamak

Commands Test Mode
to Actuators Switch

Plasma Control

System

LU Current Profile
Evolution Model

Diagnostic
Signals
Input to PCS

Test Module

@ Simserver architecture [1] used for testing algorithms running in PCS.

@ LU current profile evolution model implemented in Simserver [2] and used
to determine effectiveness of controllers and debug real-time
implementation before experimental tests.

[1] WALKER, M., et al., Fusion Eng. Des., (2007).
[2] BARTON, J.E., OU, Y., XU, C., SCHUSTER, E., WALKER, M., Fusion Eng. Des., (2011).
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4. Simserver Simulations: Things to Discuss

@ Availability of and experience with Simserver at NSTX
@ Simserver implementation
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Model Tailoring for NSTX Shot 121014P01

(2) £31(p), L32(p), L34(p), a(

0.2 0.4 0.6 0.8
Normalized Effective Minor Radius

)

>

30t=——xo 1
. —F @
% - £
g G 8
s -0 ! S
Ey 20 / E
2 5
< o
810 S
g 3
= T T P 8
o oottt -
0 0.2 0.4 0.6 0.8 1 0
Normalized Effective Minor Radius
(1) F(p), G(p), H(p)
- 55 s 1
e 2
> 5 208
[=) 5
45 S06
D o
2 £
g 4 S04
5 s
£3s go2
8 3
[ woo
0 1 0

0.2 0.4 0.6 0.8
Normalized Effective Minor Radius

(8) 2 ()

0.2 0.4 0.6 0.8
Normalized Effective Minor Radius

(4) T2 (p)

Fig. 11: Reference (1) magnetic configuration parameters, (2) bootstrap current
coefficients, (3) electron density profile and (4) electron temperature profile.
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Model Coefficients and Actuators

o

o
o

Temperature Constant (10' m™2A-'w~"
Resistivity Constant (108 mkev”)
‘\
.
:
\
|
NBI. Dep. Cons. (10 m~kev-'w™)
o
o
o :
=
o
>
o
©

o

|
o
2}

0 0.2 0.4 0.6 0.8 1
Normalized Effective Minor Radius

o

]
Normalized Effective Minor Radius

1 k: ,k e e 2 kni ..
Fig. 2: (1) Elect$021 tgernpsé’rature, plasma resistivity, (2) neutral b(egm Fhodel coefficients.

—~4 =S4
! % L o

3 Sz ; e \

<3 g === Pui -
'“9 5101 --10xu e s
=2 <8 i i
2 : . .

S £

Q1 L [ S S S S S
50 g2

o a o

0 0.2 0.4 0.6 0.8 1 0.2 0.3 0.4 0.5 0.6 0.7
Normalized Effective Minor Radius i

Time (s)
-dep

Fig. 12: (2) Referencg lll@”é& ent deposition profile. (1)

(Lehigh University) PPPL Work Meeting

(2) Control Inputs
Control inputs applied during simulation.

June 25, 2013 65/82



Electron Density and Electron Temperature Profile

Comparisons
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Fig. 13: Plasma profile evolutions comparison: PTRANSP [(1),(3)], control-oriented model
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Neutral Beam Current Density (10°Am™2)
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Noninductive Current Deposition Profile Comparison
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Noninductive Current Deposition Profile Comparison
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Fig. 15: (2) Net power across separatrix and L-H threshold power and (3) Current drive fraction.
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Poloidal Magnetic Flux Comparison - Time Traces
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Fig. 16: Poloidal magnetic flux evolution comparison.
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Poloidal Magnetic Flux Profile Comparison
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Fig. 17: Poloidal magnetic flux profile evolution comparison.
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Safety Factor Profile Comparison
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Fig. 18: Safety factor profile evolution comparison.
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Model Tailored for ITER
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Model Coefficients and Current Deposition Profiles
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Model Constants and Simulation Setup

Quantity Value Units Quantity Value Units
o 4r x 107 V-s(A-m)~! Tec, 1 None
Bgo 5.3 T TNecy 1 None
Ry 6.2 m Tecs 1 None

a 2.0 m Nic 0.85 None

b 2.615 m Mnbi 1 None
i 0.95 None Mfus 0.15 None

K 1.7 None Z, 1.7 None
V(pp) 760 m? Hpy 1.35  None

@ Simulation setup:

— Plasma ohmically heated during time interval [1.5, 16] sec.

During time interval [16, 38] sec., 6.0 MW of electron cyclotron power

injected into plasma using first gyrotron launcher.

— Atr=38sec., 4.0 MW of electron cyclotron power in all three gyrotron
launchers, 11.0 MW of ion cyclotron power and 18.5 MW of neutral beam
power injected into plasma.

— Plasma transitions to high confinement mode at r = 42 sec.

— Initial conditions for v (, ) and W(#) employed in simulation of developed
control-oriented model were extracted from the

DINA-CH+CRONOS simulation at 7y = 45 sec. LEHIGH

UNITVERSTITY.
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Actuators and Electron Density Profile Comparison
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Electron Temperature Profile Comparison
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Fig. 6: Electron temperature profile evolution comparison.
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Noninductive Current Deposition Profile Comparison
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oninductive current deposition profile evolution comparison:
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Stored Energy and Current Drive Fraction
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Fig. 8: (1) Stored energy, (2) net power across separatrix and L-H threshold power and (3)
current drive fraction.

@ Threshold power to enter H-mode is given by [11,12]:

2

+0.107, 0.7820.037 p0.772220.031 0.97540.08 p0.999-£0.101

Piresh = e [2.156 20 By a R, ] (37)
eff

@ If net power through plasma surface > threshold power, plasma will enter
H-mode, where

aw W
Pnet(t) - Ptot(t) - 7 ~ : (38)
W
[11] MARTIN, Y. et al., Journal of Physics (2008). LEHIGH
[12] RIGHI, E. et al., Nuclear Fusion (1999). / UNTVERSITTY.
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Poloidal Magnetic Flux Comparison - Time Traces
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Fig. 9: Poloidal magnetic flux evolution comparison.
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Poloidal Magnetic Flux Comparison - Time Traces
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Fig. 10: Poloidal magnetic flux evolution comparison.
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Poloidal Magnetic Flux Profile Comparison
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Fig. 11: Poloidal magnetic flux profile evolution comparison.
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Safety Factor Profile Comparison
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