

Supported by

Wave Heating and Current Drive TSG: XMP/XPs for the 2015 NSXT-U Campaign

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

N. Bertelli

for RF-TSG R.J. Perkins, J. C. Hosea Theory & Modeling: N. Bertelli Univ. Rep: P. Bonoli

January 22, 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

RF group: first year goals

- Establish a good power coupling in L- and H-mode plasmas (w/ and w/o NBI):
 - characterize RF power losses in the SOL for range of edge conditions and plasma scenarios
 - higher B_T (~ 0.65 T) & recent changes in antenna grounding should help
 - contribute to R(16-3)
- Characterize HHFW absorption in NBI-heated plasma
 - collaboration with EP TSG
 - contribute to R(16-3)
- Generate fully non-inductive $I_p \sim 300$ kA H-mode plasma with HHFW:
 - collaboration with SFSU TSG
 - if there is sufficient FW power attempt to ramp I_p from 250 to 400 kA
- Measure O-X-B coupling with synthetic aperture microwave imaging (SAMI):
 - collaboration with York U. & CCFE

XMP/XPs for RF in the first 2 run months (weeks 1-8)

- XMP for commissioning the HHFW System
 - RF conditioning into vacuum after boronization
 - RF conditioning into vacuum after lithium application
 - RF conditioning into plasma w & w/o NBI
 - Determine plasma antenna gap acceptable for outer NB operation
- RF XPs
 - RF heating in the core vs. SOL region w/ & w/o NBI
 - Ion absorption by HHFW in NBI-heated plasmas

XMP: Bring HHFW System online and operate into plasma

- Evaluate performance and condition antenna to maximum voltage:
 - Verify phase and amplitude control, arc control, and plasma current inhibit
 - Compare voltage limits and performance in multiple plasma configurations
 - Monitor plasma heating utilizing magnetics and Thomson Scattering
- Need to evaluate heat load of 2nd NB on HHFW limiter:
 - Both with and without applied HHFW power
- Evaluate voltage standoff before and after lithium/boron conditioning
- Expect XMP will require 4-5 days during weeks 1-8

XPs for weeks 5-8: RF heating in the core vs. SOL region and ion absorption

- RF heating in the core vs. SOL region w/ & w/o NBI:
 - Depends also on available diagnostics (incl. IR cameras, probes, edge reflectometer, etc.,...)
 - Will require ~ 1 day, some data maybe acquired during HHFW XMP
- HHFW ion absorption in NBI-heated plasma:
 - w/ and w/o 2nd NBI
 - Will require \sim 1 day (in combination with EP TSG XP)

Preliminary list of XPs requiring HHFW, some in collaboration with other TSGs/SGs (weeks 5 - 18)

Lead Author(s)	Title	Collaborating TSG(s)
G. Taylor	HHFW Ramp Up of Inductively Initiated Plasma from 250 to 400 kA	Solenoid-Free Start-Up + RF TSGs
J. Hosea, R. Perkins	Study HHFW Power Coupling Versus ELM activity	
G. Taylor	Low Plasma Current Fully Non-Inductive HHFW H-Mode	Solenoid-Free Start-Up + RF TSGs
G. Taylor	HHFW Heating of CHI-initiated Plasma	Solenoid-Free Start-Up + RF TSGs
J. Hosea	Turbulence Characteristics for HHFW Saturated Stored Energy versus RF power	Transport and Turbulence + RF TSGs
N. Bertelli, M. Podestà, B. LeBlanc	HHFW absorption in NBI-Heated plasmas	Energetic Particles + RF TSGs
Energetic particles & RF TSGs	Effects of HHFW on toroidal rotation (core and edge)	Energetic particles + RF TSGs
Pedestal & RF TSGs	Impact of HHFW of edge/pedestal turbulence	Pedestal structure and control + RF TSGs
Energetic particles & RF TSGs	Suppression of energetic particle driven instabilities with HHFW heating	Energetic particles + RF TSGs
RF TSG + others	FWCD for core q profile control and MHD avoidance	RF TSG + others
Particle control TF + RF TSG	Impact of HHFW on impurity	Particle control TF + RF TSG
N. Bertelli	HHFW CD measurements by MSE and code validation	

(III) NSTX-U

FY2015-16 research milestones target exploitation of new capabilities, exploration of new regimes

	emental (full ops)	FY2015	FY2016
Exp	ot. Run Weeks:	12 14	16 20
Previous New center-stack	Boundary Science	R15-1 Assess H-mode confinement, pedestal, SOL characteristics at higher B _T , I _P , P _{NBI} Develop snowflake configuration, study edge and divertor properties	R16-1 Assess scaling, mitigation of steady-state, transient heat-fluxes w/ advanced divertor operation at high power density R16-2 Assess high-Z divertor PFC performance and impact on operating scenarios
	Core Science	R15-2 Assess effects of NBI injection on fast-ion f(v) and NBI-CD profile	IR16-1 Assess confinement and local transport and turbulence at low v^* with full range of B_T , I_P , and NBI power
Present NBI New 2 nd NBI	Integrated Scenarios	R15-3 Develop physics + operational tools for high- performance discharges (κ , δ , β , EF/RWM)	R16-3 Assess fast-wave SOL losses, core thermal and fast ion interactions at increased B _T , I _P R16-4 Develop high-non-inductive fraction NBI H- modes for ramp-up & sustainment
FES 3 Fac Research	cility Joint Farget (JRT)	NSTX-U leads JRT Quantify impact of broadened J(r) and p(r) on tokamak confinement and stability	C-Mod leads JRT Assess disruption mitigation, initial tests of real-time warning and prediction techniques
() NSTX-U		RF – PRE-Pre-Forum meeting #2 (01/22/2015)	7