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Motivation

Conventional tokamak design
rely on a central solenoid to
generate an inductive initial
current.

Solenoid free non-inductive
techniques to form a startup
plasma enable lower aspect
ratio configurations and long
pulse or steady-state
current-drive for future
facilities.

Helicity injection is one way to
sustain the plasma
non-inductively.

Coaxial Helicity Injection (CHI) is a
promising candidate for plasma
start-up current formation in NSTX.
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Low aspect ratio tokamaks are formed and sustained through
electrostatic helicity injection

Magnetic helicity, K =
∫

A · Bdv− φzφp

The rate of change of magnetic helicity is

∂K
∂t

= 2φzvz︸ ︷︷ ︸− 2
∫

ΦB · ds︸ ︷︷ ︸− 2
∫
ηJ · Bdv︸ ︷︷ ︸

⇓ ⇓ ⇓
ac/inductive injection dc injection dissipation

Φ is the applied electrostatic potential on the plasma surface,
second term represents the intersection of a field line with a
surface held at a constant electric potential, when BN(a) 6= 0

A bias voltage Vinj, should be applied to the magnetic flux ψinj

that penetrates two electrodes, K̇ = 2ΨinjVinj

Jensen and Chu 1984
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In transient CHI, axisymmetric reconnection generates a high
quality closed flux start-up equilibrium in NSTX

Injected toroidal flux
links the poloidal

flux K̇ = 2ΨinjVinj

The helicity and
plasma expands
into the vessel:

if Iinj exceeds a
threshold value.

when the magnetic
compression
across the current
layer exceeds the
field-line tension of
the injector flux;
∆B2

tor/2 > B · ∇B

Iinj
BT
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NSTX has demonstrated CHI-generated plasma current up to
300kA

Plasma	  current	  

Injector	  
Current	  

Current	  Mul2plica2on	  Factor	  

(kA)	  

Raman et al. PRL 2006

Injector current
⇑

Ip = Iinj(ΨT/Ψinj)
⇓

Toroidal flux
[T. R. Jarboe (1989)]

Current multiplication
increases with toroidal
field. Scaling confirmed
with TSC simulations
[Raman, Jardin, et al.
2011]
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Helicity injection simulations are performed using the
extended-MHD NIMROD code

Resistive MHD simulations have been successful in the study
of helicity injection in fusion plasmas. Simulations to provide:

understanding of the physics of injection, flux-surface
closure, and current drive for CHI plasmas
guidance for existing experiments and extend these results
to NSTX-U
insight to viability of CHI for steady-state operation of ST
reactor
validation exercises

outline
Computational model
Simulations results
Physics of magnetic reconnection and flux closure
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The computational model

Similar geometry to the experiment

Fixed boundary fields (including NSTX
poloidal coil currents) for a narrow slot
of 4cm as in the experiment

Axisymmetric (n=0) with poloidal grid 45
× 90 fourth or fifth order finite elements

Voltage is applied across the injector
gap (Vinj ), and no current is allowed on
the absorber gap by setting ∆Bφ= 0
[Bayliss&Sovinec 2010 and Hooper
2011)

E × B normal flows at the injector and
absorber gaps

Finite Element Mesh
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What are the minimum conditions for flux surface to close?

We start with zero pressure model to allow fuller and more
detailed determination of flux closure physics

The effect of magnetic diffusivity?
F. Ebrahimi, Hooper, Sovinec and Raman, PoP letter
October 2013

The effect of magnetic footprint?
Injector flux?

The effect of injector voltage drop?
Injector voltage
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No closed flux surfaces are obtained at high magnetic diffusivity

Poloidal flux
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Poloidal flux surfaces (a) t=9.1ms (b) t=9.8ms, during the sharp
decay of the voltage

η/µ0 = 400m2/s, Te ≈ 1eV .
Diffusion time is too fast, τR ≈ 1µs. No closed flux surfaces
are obtained.
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Magnetic fluxes are only reconnected at low magnetic diffusivity

X point formation
t=9.015ms

Surface of Section
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(Loading poloidalflux.mp4)
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polflux-10fps-slow.mp4
Media File (video/mp4)



Simulations with magnetic diffusivities similar to those in the
experiment produce flux closure

(a)

(b)

η/µ0 = 8m2/s, (Te ≈ 14eV ),
Itor = 0.74MA, Iinj = 37kA
Toroidal current in the closed
flux surfaces is about 11% of
the total plasma current
η/µ0 = 3.5m2/s,
(Te ≈ 24eV ), Itor = 0.84MA,
Iinj = 36kA Toroidal current in
the closed flux surfaces is
about 15% of the total plasma
current
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Surface of Section
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x ⇐ (Te ≈ 14eV )

The volume of closed flux
surfaces increases as the
magnetic diffusivity is reduced.

⇐ (Te ≈ 24eV )

Fatima Ebrahimi CHI physics/simulations



Largest volume of the closed flux surfaces is reduced when the
injector voltage does not drop to zero fast enough

Total and n=0 Tor. Current vs. t
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Ip increases with more poloidal flux injection

Poloidal flux
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Coil currents are reduced
to give Ψinj ≈ 25mWb and
Itor = 0.34MA, Iinj = 11kA
Plasma current scales with
Ψinj
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The volume of closed flux surfaces decreases as the injector flux
footprints become wide

Surface of Section
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Physics of X point formation and magnetic reconnection
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Are there any signatures of Sweet-Parker reconnection in
transient CHI?

The formation of the X point can be explained through the
Lorentz forces and flows at the reconnection site.

Closed	  flux	  surfaces	  	  

Elongated
current sheets?

δ/L ∼ S−1/2?

∼ Vin/Vout
(S = µ0LVA/η)
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An elongated current sheet is formed during the X point formation
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The width of current sheet scales with magnetic diffusivity close
to η1/2

Simulations for several η

For reconnection τrec < τR

It is confirmed that the
reconnecting field (Bz) fits well
with a 1-D Harris sheet type
profile [∝ tanh(R/δ)]

Diamonds and crosses obtained
using a fit to a Harris type profile
and half width of the vertically
averaged profile

η[m2/s] τrec τR = δ2/η τA
√

(τAτR) Srec = LVA/η
8 ≈ 14eV ≤0.01ms ≥0.035ms 0.006ms 0.014ms ∼ 7000
400 ≈ 1eV no rec 0.001ms – – –
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What triggers magnetic reconnection?

Total fields consists of a fixed background field and
evolving axisymmetric fields (B = B0 + B̃) during helicity
injection.

(J× B)r = −∇(B2
r + B2

z + B2
φ)/2µ0 + (B · ∇B)|r/µ0

→ −∇(B2
z + B2

φ)/2µ0︸ ︷︷ ︸−B2
φ/rµ0 + BzdBr/dz/µ0︸ ︷︷ ︸

magnetic compression magnetic curvature
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The magnetic compression exerts a bidirectional pinch force that
brings the oppositely directed fields together to reconnect

The system is almost in equilibrium before reconnection, and when
voltage is turned off and Bφ drops around the injector region,
magnetic compression exerts a radial force and system is imbalanced
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Fatima Ebrahimi CHI physics/simulations



Consistent with the bidirectional pinch force, as the injector
voltage is turned off, a radial pinch ExB flow is generated

inflow
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The Sweet-Parker type structure of inflow and outflow are clearly
seen in the coordinate along the elongated current sheet
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The outflows approach poloidal Alfvén velocities at small
magnetic Prandtl numbers

In Sweet-Parker
Vout ≈ VA = Bin/

√
(µ0ρ)

Viscosity modifies the
outflows
Vout/VA = 1/

√
(1 + Pm)

Bin = Bz ≈ 0.0118T (The
reconnecting field)
VAz ≈ 90km/s
The outflows can reach
60km/s (Pm=1)
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The evolution of poloidal flux that leads to reconnection is caused
by an induced toroidal electric field (loop voltage)

Eφ = −(V × B)φ + ηµ0Jφ
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The change of sign of induced toroidal
electric field (loop voltage) shows the
poloidal flux evolution but not
sufficient for the reconnection.

Sweet-Parker signature:
Eemf [out ] ≈ VinB0 ≈ Vr Bz outside
reconnection layer(r ≈ 0.63) and
inside Eemf [in] ≈ ηJ
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Simulations with temperature and density evolution

n
(Γ− 1)

(
∂T
∂t

+ V.∇T ) = −p∇.V−∇.q + Q

p = nkT , q = −n[(κ|| − κ⊥)b̂b̂ + κ⊥I] · ∇T , Q = ηJ2.

Finite pressure simulations use anisotropic thermal
conductions, κ|| ∝ T 5/2

e and κ⊥ = 2.5m2/s, ohmic heating

and Spitzer resistivity (η ∝ T−3/2
e ), with time dependent

boundary poloidal fields reported in
[E. B. Hooper, C. R. Sovinec, R. Raman, F. Ebrahimi, J.
Menard, PoP 2013]

Here:
Simulations at finite pressure with fixed boundary fields
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Simulations with temperature evolution also show formation of a
fairly large volume of closed flux surfaces on the experimental
time scales

Injector current
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during the flux closure at t=9.72ms.
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Core plasma temperature (in the closed flux region) does not
exceed 30eV

t=9.08ms t=9.87ms
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As plasma is heated by ohmic heating, due to
temperature-dependent resistivity, at hot (and less resistive) plasma
locations, current can easily flow and causes the flux to close
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Temperature is equilibrated after the X point formation and
reaches about 20eV at the X point
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reconnection site (Z=-1.3m), before
and after X point formation.

The temperature is equilibrated
further in the closed flux surface
region as the closure occurs (Z=0)
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Summary

Simulations show that an X point is formed in the injector
region, followed by formation of closed flux surfaces within
0.5 ms after the driven injector voltage and injector current
begin to rapidly decrease.
Through direct numerical calculations of the radial forces,
we found that as the injector voltage is turned off, a radial
bi-directional pinch flow causes the field lines to reconnect.
Closed flux surfaces during transient CHI can be explained
through 2-D Sweet-Parker type reconnection.
Numerical simulations hint that transient CHI experiments
in NSTX may be the first to demonstrate a forced magnetic
reconnection process in a large scale fusion device.

Ongoing work:

Could non MHD effects (2-fluid, Hall terms) affect the volume of
the closed flux surfaces?
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Figure : The profile of evolving reconnecting component, B′z vs R′ for
Z ′ = 6cm (R′, Z ′ are the new sheet-aligned coordinates) shown in
red, and a fit of f(x)=a*tanh(x/δ)+b shown in green.
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Low aspect ratio tokamaks are formed and sustained
through electrostatic helicity injection

NSTX - HIT-II
dc helicity injection has
been tested on CDX, HIT
tokamaks, CTX sphero-
mak and NSTX.
⇒ edge current drive
Current relaxation by
fluctuations (driven CHI)
⇒ Non-inductive start up
(transient CHI)

K̇ = 2ΨinjVinj

T. R. Jarboe et al. (1998)
M. Ono et al. (1987)
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Helicity injection simulations are performed using the
extended-MHD NIMROD code

Solves the linear and nonlinear MHD equations
∂B
∂t

= −∇× E + κdivb∇∇.B

E = −V× B + ηJ +
1

ne
J× B

J = ∇× B
∂n
∂t

+∇.(nV) = ∇.D∇n

ρ(
∂V
∂t

+ V.∇V) = J× B−∇P −∇.Π

n
(Γ− 1)

(
∂Tα

∂t
+ V.∇Tα) = −pα∇.V−∇.qα + Q

q = −n[(κ|| − κ⊥)b̂b̂ + κ⊥I] · ∇T

Π is the stress tensor (also includes numerical ρν∇V )

κdivb and D are magnetic-divergence and density diffusivities for
numerical purposes.
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The computational model

Voltage is applied across the injector gap (Vinj ), and no
current is allowed on the absorber gap by setting ∆Bφ= 0.
(CHI gap B.C. in HIT-II simulations by Bayliss&Sovinec
POP 2010 and been generalized by Hooper)
E × B normal flows at the injector and absorber gaps
Perfectly conducting no-slip boundary conditions except in
the gaps

A layer of large resistivity and viscosity at the top and
bottom used (1 + (

√
(dvac − 1)|y/ymax |dexp)2, dvac = 30,

dexp = 20
Kinematic viscosity = 1− 60m2/s, magnetic diffusivity =
3− 400m2/s
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Topology of the evolving field lines before and after flux closure

Before	  	   A(er	  
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Magnetic reconnection is the rearrangement of magnetic field
topology of plasmas
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In the local Sweet-Parker model the plasma inflow is related to
the outflow from the diffusion region

mass conservation
VinL ≈ Vout`

energy conservation
Vout ≈ VA = Bin/

√
(µ0ρ)

matching ideal E outside
the layer with the resistive
E in the layer
VinBin ≈ ηJ → Vin ≈ η/µ0`
(using J ≈ Bin/µ0l)

Vin/Vout = S−1/2 = `/L
(S = µ0LVA/η)
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Linear terms including
vacuum fields

Nonlinear terms with
evolving fields
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The only contributing force during reconnection is JxB force
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inertia (ρV · ∇V |r ) terms in
the momentum equations
during reconnection.
These forces are very
small.
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Poloidal flows before and after the reconnection show X point
formation

before after
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Time evolution of poloidal flux surfaces

t=6.12ms t=6.3ms t=8.63ms
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Ongoing project:

Could non MHD effects (2-fluid, Hall terms) affect the volume of
the closed flux surfaces?

E = −V× B + ηJ + 1
ne J× B
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Closed flux surfaces form during the late injection phase with the
Hall term

Surface of Section
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η/µ0 = 8m2/s, Te ≈ 14eV ,
Itor = 0.34MA,Iinj = 11kA,
Hall term is turned on at t=8ms
(shown in red line)
Reconnection occurs but numerical
problem appear later in time
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TCHI experiments in NSTX may be the first to demonstrate a
forced magnetic reconnection process in a large scale device

NSTX MRX

Device n[m−3] T[eV] L[m] Brec [G] Srec S
NSTX 4× 1018 15-30 1 10-15 104 5× 105

MRX 5× 1019 5-20 0.25 350 240 –
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