Heating, Confinement and Stability Studies in NSTX

M.G. Bell

presented for the

NSTX Research Team

APS-DPP Annual Meeting Nov 11 – 15, 2002

Experimental Capabilities Were Improved for 2002 Campaign

<u>Capabilities</u> (this year)	
PFC bakeout	350°C
Gas fueling	HFS
Aspect ratio	1.27
Elongation	2.5
Triangularity	0.8
Plasma Current	1.5MA
Toroidal Field	0.6T
NBI (100kV)	7 MW
HHFW (30MHz)	6 MW
- full antenna phase control	
Pulse Length	1s
Reduced PF error field	

High-Field-Side Gas Injection Improved Reproducibility and Longevity of H-mode

- HFS injector gives large initial flow then continuing lower flow
 - contributes to density rise
- LFS fueling with rate similar to HFS produces
 - -Delayed transition
 - -Shorter H phase
- Can also get H-mode by loading walls with D₂ gas
- Confinement similar in all cases

R. Maingi, C. Bush

Several Factors Contributed to Sustained Higher β Operation

- Reduction of static error field
 - Reduced incidence of locked modes at low β
 - Reduced rotation damping
- Maintaining $q_{min} > 1$ for longer
 - Previous high- β plasmas collapsed when $q_{min} \leq 1$
 - Higher initial T_e & purity increased conductivity
- H-mode broadened profiles

Reshaping & Realignment of Outer PF Coil Reduced Error Field & Mode Locking

Achieved Substantial Progress in β_T

Highest Stored Energy and $\beta_T \times \tau_E$ Achieved at Higher Toroidal Field

Global Confinement with NBI Continues to Exceed Standard Tokamak Scalings

- Confinement times from EFIT determination of W_{tot}
 - Times near peak W_{tot}; include NB *injected* and Ohmic power

S. Kaye

Profile Analysis Confirms Low Ion Transport and Shows Unusual Features

Summary

- New facility and diagnostic capabilities added
 - Routine H-mode operation
- Significantly increased β
 - β_T , β_N , β_P , $\beta_T \tau_E$, $\beta_N H$, W_{tot} reached new levels
- Good global confinement observed with NBI heating
 - H-modes have more favorable power dependence
 - Single parameter dependences remain to be determined
- Ion confinement appears to be very good

Following talks will elaborate on several of the interesting trends in NSTX performance

HHFW Heating Not Yet as Effective as NBI

 Compare measured plasma energy increase with ITER scaling for plasma conditions

 $I_p=0.5MA, B_T=0.45T, H=1$

- Current-Drive antenna phasings ⇒ k_{||} ≈ ±7m⁻¹; Heating phasing ⇒ k_{||} ≈ 14m⁻¹
- Heating quite variable
- Power was limited by lower antenna standoff
 - feedthroughs now improved

