Changes in Edge Turbulence with *ρ** and **Toroidal Rotation Input in NSTX**

M. Gilmore, S. Kubota, W.A. Peebles, and X.V. Nguyen

Electrical Engineering Dept., University of California, Los Angeles

D. Stutman

Johns Hopkins University

and the NSTX Team

Presented at the 44th Annual APS Division of Plasma Physics Meeting Orlando, FL Nov 11-15, 2002

Experiment Overview

- A number of parameter scans to vary ρ^* and toroidal rotation input were performed in NSTX L-mode discharges
 - $B_{toroidal}$ scans (3 6 kG on axis) $\Rightarrow \rho^*$
 - NBI line changed (source A, C) \Rightarrow toroidal rotation input
 - n_e , I_p , NBI power were also scanned
- Neon was gas puffed at the edge, and penetration tracked via USXR
- Turbulence was monitored *in the edge of the confinement region* by a two channel 20-30 GHz O-mode homodyne reflectometer located on the outboard midplane ($n_{CR} \approx 5 \times 10^{12} 1.1 \times 10^{13} \text{ cm}^{-3}$).
- Cutoff layers where these measurements were made were a few cm inside the LCFS: 0.90 ≤ r/a ≤ 0.98 (R ≈ 141 - 149 cm)

•
$$T_e \approx 20$$
 - 100 eV, $L_n \approx 5$ - 12 cm

Cutoff Layers were Stationary During Correlation Measurements

• Although the line average density continued to ramp up throughout the shot, the edge density changed little during I_p flattop

Power Spectra, Autocorrelation, pdf's

- Broadband Power Spectra
- Small (if any) Doppler shifts observed with changes in NB line, I_p , B_t
- Autocorrelation times (1/e) $\tau_{AC} \sim 10 \ \mu$ s, and showed no parametric changes
- Gaussian pdf's with low intermittency

Radial Correlation Lengths Scaled with ρ_s at Fixed I_p/B_{tor} (Constant $q_{cyl,edge}$)

Normalized Correlation Lengths Decreased with B_{tor} at Fixed I_p (1 MA)

- Scaling by $\rho_{\text{s,toroidal}}$, $\rho_{\text{s,poloidal}}$ showed the same trend
- Edge neon penetration rate *increased* with B above 4.5 kG, core penetration decreased somewhat (D. Stutman)
- q_{95} varied $\approx 5 \rightarrow 9$
- Central toroidal rotation appeared to increase with B (CHERS)

No Clear Trend in $\Delta \mathbf{r}$ with I_p at Fixed B_{tor}

Summary

 The scaling of radial correlation lengths, ∆r, with discharge parameters a few cm inside the LCFS (0.90 < r/a < 0.98) has been investigated in NSTX L-mode plasmas.

I	II	111
B _{tor} scan @ constant q _{cly} (I _p /B _{tor})	B _{tor} scan @ constant I _p	I _p scan @ constant B _{tor}
Δr / ρ_s constant	∆r / ρ _s decr. with B _{tor}	no clear trend in Δr / ρ_s

- Autocorrelation times (1/e) τ_{AC} ~ 10 $\mu s,$ and showed no parametric changes
- No significant changes in correlation lengths or Doppler shifts were observed as the NB line was changed
- Detailed comparisons with gyrokinetic simulations (e.g. GYRO, etc.) and data from other devices (e.g. DIII-D) are planned for the future.

