plasma edge with both poloidal and toroidal views. The diagnostic is simultaneously sensitive to C 111, C IV, and He II intrinsic
emission light (between 4595 and 4705 A) with 10 ms resolution, covering a radial region of 15 cm at the extreme edge of the outboard

mid-plane. Combined with the local pressure gradient and EFIT reconstructed magnetic field profile, the edge flow gives a measure of T M Biewer R E Bell D \A/ Johnson
. . Py A, Py . .

PHI“[ETU“ Flnsm“ the local radial electric field. Preliminary results include measurement of: 1) rotation, temperature and radial electric field changes
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