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ABSTRACT. Beam-driven instabilities with
frequencies of the order of 100 kHz are com-
mon in both NSTX and DIII-D. In NSTX, the
frequency often changes appreciably (Af/f >
10%) in milliseconds, while rapid frequency chirp-
ing is rare in DIII-D. The origin of this differ-
ence is investigated. One hypothesis is that
rapid chirping is associated with strong shear
in the characteristic orbital frequencies of the
fast ions, such as dwy/dr. (wp is the bounce
frequency of trapped beam ions.) Another pos-
sibility is that linewidths are broad in NSTX
because many TAESs are simultaneously desta-
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bilized in the wide spectral gap. A third possi-
bility is that nonlinear saturation of the Alfvén
instabilities shows more variety in a spherical
tokamak because the transport of beam ions is
reduced.

This work is supported by the U.S. Department of Energy.



Motivation

e An unstable mode isn’t necessarily deleterious—
it all depends how it saturates. (For ex-
ample, Alfvén modes can be beneficial-see

QP1.046 in this session.)

e Simplified models of nonlinear saturation have
had several successes for modes in the TAE
band of frequencies [1, 2, 3] but understand-
ing is still incomplete.

e Beam-driven modes in MAST and NSTX
often chirp rapidly in frequency. This phe-
nomenon is occasionally observed in DIII-D
but it is rare [4].

e An Alfvén similarity experiment between NSTX
and DIII-D with closely matched parame-
ters was recently completed [5]. Can a com-
parative study shed light on the mechanisms
that control chirping?



Hypotheses: What Causes Chirping?

Spatial dependence of orbital motion Early
theories of the fishbone instability suggested
that the mode chirps because the beam-ion
precession frequency decreases with radius
6]. As the beam ions move out radially, the
mode manages to preserve the resonance. A
“relay runner’” model may explain how this
occurs [7].

Doppler shift effects Initial analysis of DIII-
D data suggested that chirping occurs for
particular values of the toroidal rotation fre-
quency [4] but subsequent data contradicted
this hypothesis [8]. Another idea is that, as
the mode amplitude grows, magnetic inter-
action with the vessel or with uncorrected
error fields exerts a torque on the mode,
causing it to slow down.

Phase-space hole According to a theory by
Berk et al. |9], frequency sweeping is deter-
mined by a competition between three dif-

4



ferent rates: the fast-particle drive, vz, the
damping due to background dissipation, g,
and the effective collision rate for scatter-
ing out of resonance in phase space, V.
Frequency sweeping occurs when 7, <4 but
Veff < 74. In an experiment involving hot
electrons [10], the occurrence of chirping was
controlled by increasing v.rs. Recent com-
parisons of this theory with chirping Alfvén
modes observed in JT-60U and MAST are

promising [11].

Wide spectral gap The gaps in the Alfvén
continuum are very wide in a ST and differ-

ent poloidal numbers are more strongly cou-
pled than in DIII-D. Perhaps the linewidth

is broad in NSTX because several TAEs are
simultaneously destabilized.

Different beam-ion transport Differences
in radial transport of the beam ions may ac-
count for the difference (perhaps acting as a
different v, s in the Berk-Breizman model).

5



More toroidal harmonics Chirping modes
usually have a dominant toroidal mode num-
ber; in DIII-D, steady modes often consist
of a “cluster” of different n numbers. Per-
haps the resonances in phase space are more
likely to occur in DIII-D, causing the satu-
ration mechanism to be an “avalanche” [12].



Alfven Mode Similarity Experiment

Goals: Match NSTX field and shape to study R dependence.
(The beams are similar, so this matches vp/va.)
Measure stability threshold.

Measure most unstable toroidal mode number n.
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Beam-ion Orbits Span Most of the Plasma

NSTX DIll-D
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Orbital Frequency Hypothesis: NSTX Similar
to DIII-D
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Berk-Breizman Hypothesis: Some Rates are
Uncertain

® Z.¢rin NSTX is usually larger than in DIII-
D — if v.ss is caused by pitch-angle scat-
tering, makes chirping less likely.

e Stability study suggests marginal stability
in NSTX occurs at slightly lower values of
beam beta; also NOVA-K finds stronger drive
in NSTX — larger value of ~;/v4 favors
chirping.

e The relative value of the damping rate is
uncertain both experimentally and theoret-
ically.
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Larger ~vz, in NSTX?
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BEAM DRIVE

NOVA-K Calculation of vy,
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Beam Transport Hypothesis is Plausible

e Reductions in the neutron rate that corre-
late with Alfvén activity occur less often in

NSTX than in DIII-D.

e In particular, in the similarity experiment,
the neutron rate was unaffected by Alfvén
activity in NSTX but was ~ 15% lower than
the classical rate in DIII-D.

e In earlier work, a semi-empirical preadator-
prey model that attributes mode saturation
to beam-ion losses agreed well with the TAE

data [1].

e For a given mode amplitude at the wall,
steady TAE modes in DIII-D cause ten times
larger drops in the neutron rate than chirp-
ing modes [4].

e DIII-D plasmas with effective transport gen-
erally have multiple modes. Is this always
the case? (Needs further analysis.)
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Multiple unstable toroidal modes are common
in DIII-D
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Conclusions: What Causes Chirping?

Spatial dependence of orbital motion Probably
not

Doppler shift effects Excluded

Phase-space hole Maybe-—needs better anal-
ysis or more clever experiments

Wide spectral gap Not evaluated here (but
seems unlikely—the DIII-D gaps are already
quite wide).

Different beam-ion transport Empirical re-
sults OK—needs rigorous study
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