

Experimental Exploration of Electron Confinement in NSTX*

B.P. LeBlanc, R.E. Bell, S. Bernabei, T.M. Biewer, J.C. Hosea, C.K. Phillips, R.J. Wilson, PPPL, D. Stutman, Johns Hopkins University, S.A. Sabbagh, Columbia University, and the NSTX team

> APS-DPP November 15-19, 2004 Savannah, GA

*This work is supported by U.S. DOE contract DE-AC02-76CH03073.

APS-DPP-2004-LeBlanc-1

Motivation

- The higher β is expected to enhance electromagnetic turbulence effects on transport
- HHFW heating provides, in theory, a means to heat the bulk electrons directly
- Some insight into the electron thermal transport can be gained by comparing transport in HHFW and/or NBI heated plasmas
 - Compare spinning and non-spinning plasmas

Plan of this Poster

 Review of the status of the HHFW driven H-mode plasmas

 Results from plasma heating experiments using combinations of HHFW and NBI power

New Results from 2004 Experiments HHFW Driven H-mode Plasmas

- Developed a dependable DND HHFW H-mode plasma
 - Separate plasma fueling from antenna coupling
 - CS gas injector and/or DND geometry
- Expanded operational envelope
 - Ip ≈ 0.3-0.5 MA, $B_T \approx 0.37$ 0.45 T, low density, LSN
 - $k_{\prime\prime} = 14 \text{ m}^{-1}$
- New range achieved
 - Ip ≈ 0.6-0.8 MA, $B_T \approx 0.45$ T, medium density DND
 - $k_{//} = 14 \text{ and } 7 \text{ m}^{-1}$
- Document HHFW H-mode plasma
 - Many discharges with beam blips
 - ERD documentation

HHFW Driven H-mode Plasma

- More reliable H-mode operation obtained at lower *I_p* like 0.6 MA shown here
- The H_α drop signature is less telling than with NBI plasmas, because of antenna SOL interaction
- A decrease of T_{e0} is often observed after H-mode onset, but W_{mhd} continues to climb (See profiles on next slide.)

HHFW H-Mode Plasma Profiles

Most reliable way to identify HHFW H-mode plasmas is by looking at the Thomson scattering profiles. One observes T_e pedestal and n_e "ears" at the edge.

HHFW H-mode Obtained with $k_{//} = 14 \text{ m}^{-1}$

The HHFW power was stepped up to 1.5 MW and later on to 1.8 MW.

Two transitions are observed, at 0.315 s and at 0.415 s, corresponding to the two power levels. (See dashed lines.)

 H_{α} trace drops can be confirmed with the Thomson scattering data.

Thomson Scattering Data for 1st Transition

- Confirm the 0.315 s transition time with the Thomson scattering data
- *n_e* pedestal develops between TS time points 0.309 s and 0.327 s
- T_e pedestal is also seen

H mode Obtained with $k_{//} = 7 \text{ m}^{-1}$

- H-mode with $k_{//} = 7 \text{ m}^{-1}$
- Transition time marked with dashed line
- •H mode lasts until end of 1st HHFW pulse (see next slide)
- W_{mhd} and $n_e I$ reduced after H mode ends

TS Profile Details for 7 m⁻¹ H-mode Plasma

Nine consecutive TS times 0.243-0.377s. Phases "OH", "L" and "H" are indicated by dashed circles. Edge details shown in lower panels.

H-Mode Threshold Changes with $k_{//}$

 $P_{thres} \le 1.5 \text{ MW for } k_{//} = 14 \text{ m}^{-1} \text{ and } \approx 2.0 \text{ MW for } k_{//} = 7 \text{ m}^{-1}$

HHFW Plasmas vs. ITER-97L and -98H Scalings

- L- and H-mode data mingle together, similar to NBI H mode*
- But HHFW H mode scales less strongly: $\leq 1.5x97L$, $\leq 1x98H$

CHERS for Measuring T_i and v_{ϕ}

CHERS data is needed for TRANSP transport analyses

Caution is needed when using CHERS to obtain T_i and $v\phi$, since the beam energy input may not be negligible.

Although I_p is only 0.7 MA, the plasma captures a significant amount of fast particles: W_{mhd} increases by \approx 10% after each 10-ms beam pulse.

Lower beam power was found to produce CHERS data of limited quality.

APS-DPP-2004-LeBlanc-13

CHERS T_i and v_{ϕ} and MPTS T_e and n_e Data

Fast Particles Accelerated by Wave

Neutron trace peaks after NB blip turnoff when RF on

ERD Diagnostic Indicates Edge Ion Heating

3 MW, $k_{\prime\prime} = 14 \text{ m}^{-1}$

- Unexpected edge ion heating during HHFW
- Might be explained by parametric decay into IBW wave (T. Biewer RI 1.001)
- Of the order of 20% of the absorbed power could captured at the edge (S. Diem JP1.014)
- $T_i^{pol} > T_i^{tor}$ during HHFW
- T_i^{pol} increase precedes T_e at the HHFW onset
- •ERD has a 10-ms integration time

113054 @ 140 cm 250 T:pol 200 Te lemperature 150 T.tor 100 50 0.2 0.0 0.1 0.3 0.4 0.5 0.6Time (s) T. Biewer

Combined HHFW & NBI Operation

- Use one or two NBI sources at lower energy (70 kV) to reduce antenna plasma interaction, while maintaining a gap ≈ 4 cm
- Start HHFW during L-mode plasma
 - One NBI pulse
 - Three NBI pulses
- Start HHFW during H phase of NBI driven Hmode plasma

HHFW Starts before H-mode Onset

Neutrons (S_n) Doubles and Small W_{mhd} Increase

HHFW starts before H-mode onset

APS-DPP-2004-LeBlanc-19

Greater Core T_e Compared to NBI-only Plasma

APS-DPP-2004-LeBlanc-20

Neutrons (S_n) *Doubles and* W_{mhd} *Increases*

HHFW starts before H-mode onset: three NBI pulses

APS-DPP-2004-LeBlanc-21

HHFW Increases Core T_e Compared to NBI-only

Overlay of HHFW+NBI (solid) and NBI (dash) at 0.193 and 0.293 s

HHFW Starts after H-mode Onset

Use two NBI sources early on to assure NBI H-mode target plasma

APS-DPP-2004-LeBlanc-23

HHFW during NBI Driven H-mode Plasma

 W_{mhd} and neutron (S_n) changes are small and reproducible, but appear more related to edge effects than to heating

Very Little or No Change in T_e

Overlay of HHFW+NBI (solid) and NBI (dash) at 0.293 and 0.393 s

CONCLUSIONS (1)

- HHFW H-mode plasmas
 - Operational envelope extended to include $k_{//}$ = 14 and 7 m⁻¹, I_p up to 0.8 MA
 - Edge ion heating observed
 - Power threshold ≈ 1.5 MW for $k_{//} = 14$ m⁻¹ and ≈ 2 MW for $k_{//} = 14$ m⁻¹. The latter could be explained by higher edge ion absorption observed for lower $k_{//}$. (S. Diem JP1.014).
 - NBI blips interact with HHFW and modify the time response of the neutrons.
 - NBI blips increase W_{mhd} by $\approx 10 \%$

CONCLUSIONS (2)

- Combined HHFW and NBI operation
 - HHFW starts during L-phase
 - Neutron rate double
 - Modest or small W_{mhd} increase
 - T_e increase observed over the extended core region. It is not verified yet whether this T_e increase corresponds the expected HHFW direct electron heating, or results for a trickling down of the HHFW power absorbed by the fast particles

CONCLUSIONS (3)

- Combined HHFW and NBI operation
 - HHFW starts during H-phase
 - Essentially no change in neutron rate or stored energy
 - No T_e increase observed
 - The HHFW does not seem to reach the plasma core
 - It is not understood whether the low edge density associated to the H mode, the edge ion heating generated by wave parametric decay, or other effect is/are responsible for this behavior.
- Analysis work is ongoing

Related Papers at this Meeting

- S. Bernabei, JP1.011
- J.C. Hosea, JP1.012
- C.K. Phillips, J
- S. Diem, JP1.0
- Ted Biewer,
- J.R Wilson,
- P. Ryan

JP1.013 JP1.014 RI1.001 CO3.012

CO3.013