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Abstract
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Background and Motivation

• In the spherical torus (ST), it has been predicted that core transport due to
long wavelength turbulence (ITG, TEM - kθρs≤1) may be suppressed by
increased ExB shear, Ti/Te ratio and gradient β effects. Gyrokinetic linear
stability analyses of existing NSTX data suggest the growth rate of these
modes can be small.

• Assessment of thermal transport via TRANSP for beam-heated discharges
on NSTX often indicate low levels for the ion channel.

• Experimentally, direct measurements of turbulence have been carried out
in the edge using GPI, the fast reciprocating probe, reflectometry, interfer-
ometry, etc. These measurements all show large levels of long wavelength
turbulence.

• Recently, correlation reflectometry has been used to measure turbulence
radial correlation lengths in the core of peaked moderate density profiles of
NSTX L-mode discharges. These are the first quantitative measure-
ments of correlation lengths in the core of the ST.
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Goals and Poster Content

• Short and long term goals:

- For various discharge conditions, measurement and characterization
of radial correlation lengths and fluctuations levels (N.A. Crocker,
JP1.022) using reflectometry.

- Relation between correlation lengths and confinement properties.
- Detailed comparison of correlation lengths with those predicted by

GYRO (D.R. Mikkelsen, JP1.020).

• Poster Content

- Details of the homodyne radial correlation reflectometer hardware
and data analysis method.

- Initial measurements for low-density L-mode discharges with NB-
heating.

- Analysis of data from attempted ρ* scan.
- Effects of fast-ion induced MHD for NB-heated shots on correlation

length measurements.
- Summary and future work.
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Previous Measurements with 20-30 GHz Reflectometer

• Measurements utilized 20-30 GHz microwave source
(cutoff density ~0.50-1.1x1013 cm-3).

• Homodyne radial correlation reflectometry.

• NBI heated low-density L-mode plasmas.

• Cutoff layers (30 GHz) 4-8 cm inside LCFS.

• Fluctuation frequencies 20-500 kHz correlated.
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Principle of Homodyne Radial Correlation Reflectometry

• Fixed frequency f1 and swept frequency f2 with identical launch and receive
horns reflect from different cutoff layers in the plasma.

• Correlation coefficient function of homodyne signals x and y is modulated
by the swept DC phase of f2.

• Envelope of correlation coefficient function mapped from from frequency to
radial position using density profiles from Thomson scattering.

• Correlation length Lcr is defined here as the e-folding distance of the
correlation coefficient function envelope (best fit to Gaussian).
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Details of Current Reflectometer Hardware
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• 26-40 GHz, ncr~0.85-2.0x1013 cm-3.
• Voltage-controlled HTOs for fast sweep

rates.
• Both source and DAQ (8 MSa/s) PC-

controlled.
• ~14 ft of coaxial cable (roundtrip)

between equipment and machine.
• Launch and receive polarization

determined via rotary waveguide joint.
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Reflectometer Diagnostics at NSTX Midplane
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Typical Discharge Parameters:
R0 = 100 cm
a = 55 cm
Ip = 0.58-85 MA
BT = 0.32-0.44 T
κ = 1.9
δ = 0.45
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Discharge Waveforms and Reflectometer Signals

NB Power

Peak Temperature

Line Density

Plasma Current

Homodyne Signal (Fixed Frequency Channel)

Homodyne Signal (Swept Frequency Channel)
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Frequency Sweep Linearization & Path Length Adjustment
T

un
in

g
V

ol
ta

ge
[V

] F
requency

[H
z]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

24
26
28
30
32
34
36
38
40

0 0.005 0.01 0.015 0.02 0.025 0.03
Time [s]

HTO Tuning Voltage
& Microwave Frequency
vs Time

0.300 0.305 0.310 0.315
Time [s]

-0.8

-0.4

0.0

0.4

0.8

0.300 0.305 0.310 0.315

-0.4

-0.2

0.0

0.2

0.4

0.900 0.905 0.910 0.915

Fr
in

g
e

Pa
tt

er
ns

ρ xy
S

w
ep

tC
ha

nn
el

[V
]

cable length-30 cm

cable length+30 cm

113127

113127

Frequency Increasing
Fixed Frequency

Fringe Pattern due to
Reflection from Back Wall

• Reference path length Lr is fixed. Probe
path length Lp depends on transmission
line (coaxial cable or Lt) and plasma profile.

• Number of fringes per full band sweep
adjusted by varying cable length.
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• Averaging window T for ρxy must be small
to catch fringe pattern (T~50 µs). Larger T
reduces variance but smooths peaks.

• Significant fringe peaks identified by height
and spacing.

• Error in Lcr can be several cm from uncer-
tainty in MPTS measurements.

• For Lcr of several cm, background ne, Te , Ti,
and B profiles can change significantly over
this distance. For gyroradius normalization,
these values are taken at the midpoint
radius between the the fixed frequency
cutoff and the 1/e location.

• For Lcr estimates, an alternative to ρxy is the
coherency function γxy:

Since good time resolution is required to
resolve fringe peaks, ρxy is used exclusively
here.

• Airy width wAiry=0.48 Ln
1/3λ0

2/3~1 cm.

Details of Lcr Estimates and Normalizations

T=50 µs

T=150 µs

112996
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Typical error bars in Lcr due
to uncertainties from MPTS.

Effect of averaging window T.
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Experimental Conditions for ρ* Scan

Bt = 4.4 kG
= 3.85
= 33..77
= 3.25

Time [s]

• Various scans were performed:
- ρ* scan at constant q: Bt=3.25-4.4 kG with

corresponding Ip=580-850 kA.

- Ip Scan at fixed Bt=4.4 kG: Ip=680-850 kA.

- Bt Scan at fixed Ip=680 kA: Bt=3.7-4.4 kG.

• Scan of radial location by changing fixed
frequency of correlation reflectometer: 30, 35,
and 40 GHz (ncr=1.1, 1.5 and 2.0x1013 cm-3).

• Shots with similar profiles at different
conditions were difficult to find.
- At lower Bt, MHD and beam-driven instabili-

ties (fishbones, TAEs, CAEs?) a problem.
- Collapse of Te and ne due to pressure peak-

ing during middle of discharge.
• Three comparisons presented here:

- ρ* scan: Bt=3.7 and 4.4 kG, ρ~0.45 and 0.65.

- ρ* scan: Bt=3.25, 3.85 and 4.4 kG, ρ~0.7.

- Radial scan for Bt=4.4 kG, Ip=850 kA.

q95

q0
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ρ* Scan: Lcr~5-12 cm at ρ~0.45 and 0.65

Lcr vs Local Field Strength Lcr/ρs vs Local Field Strength

• Bt=3.7 and 4.4 kG, ffixed=35 GHz.
• Lcr ranges from 5-12 cm at ρ~0.45

and 0.65; Lcr increases inversely
with ρ and B.

• Lcr normalized by ρs is roughly
constant (~9-10).

• Measurement location (ρ) is
taken as midpoint between fixed
frequency cutoff and 1/e location.

t=277 ms
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30 GHz
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• Bt=3.25, 3.85 and 4.4 kG,
ffixed=30 GHz.

• Lcr~4-8 cm at ρ~0.7.

• Lcr increases inversely with B.

• Lcr normalized by ρs is roughly
constant (~7-8).

ρ* Scan: Lcr~4-8 cm at ρ~0.7

t=343 ms

t=324-395 ms
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• Bt=4.4 kG, Ip=850 kA, ffixed at 30
and 40 GHz.

• Lcr ranges from 2-12 cm over
radius of ρ~0.55-0.75.

• Lcr increases inversely with ρ.

• Lcr/ρs varies from 4-18 over this
range.
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Radial Scan: Lcr~2-12 cm at ρ~0.55-0.75
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Effect of Fast Ion Induced MHD (continued)
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• Large amplitude MHD oscillations
due to fast ions (bounce fishbone,
TAE, CAE) always present for NB-
heated discharges.

• Coherence between Mirnov and
quadrature reflectometer phase is
high.

• Correlation drops out when ampli-
tude becomes too large (e.g. bursts).
These bursts are correlated with
similar bursts in reflectometer phase
amplitude.

• Contribution of smaller level ampli-
tude ambient MHD to the correlation
coefficient is still unclear.
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Summary

• Lcr measured in the core of the ST for the first time. Measurements
made in peaked moderate density plasmas in beam-heated L-mode
discharges.

• During current flattop, values of Lcr in the range of 2-12 cm measured over
ρ~0.45-0.75. Lcr/ρs ranged from 3 to 18.
- Smallest Lcr at the largest radius and magnetic field. Lcr increases

inversely with radius and magnetic field.
- For matched profiles in the ρ* scan, Lcr/ρs at a given ρ is roughly

independent of B.
- Lcr/ρs increases towards the core (magnitude varies for different

discharge conditions).

• For NB-heated discharges, fast-ion induced MHD can be dominant source
of high frequency fluctuations in the homodyne signals instead of turbu-
lence. While large amplitude oscillations tend to reduce the correlation,
small amplitude ambient oscillations may contribute to the measured
correlation lengths.
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• Further analysis to determine the contribution from fast ion driven MHD
will require investigating a larger data set including RF-heated and
ohmic-only discharges (with no beam-driven instabilities).

• Correlation with confinement properties for various discharge conditions.

• Role of magnetic shear will require further measurements with MSE.

• Understanding of turbulence-driven transport mechanisms in will require
detailed comparison of measured correlation lengths as well as phase
(density) fluctuation levels and spectra with those calculated from the
output of GYRO. Use of 2-D full-wave reflectometry simulations using
the GYRO output as input.

Future Work
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