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Abstract

NSTY ——

Turbulence Radial Correlation Length Measurements
in the Core of NSTX! S. KUBOTA, W.A. PEEBLES, N.A.
CROCKER, X.V. NGUYEN, UCLA, D.R. MIKKELSEN, R.E. BELL,
S.M. KAYE, B.P. LEBLANC, A.L. ROQUEMORE, PPPL, J. CANDY,
R.E. WALTZ, General Atomics, M. GILMORE, UNM — Assessment
of ion thermal transport via TRANSP as well as linear gyrokinetic sta-
bility analyses have suggested that long-wavelength (kgp; < 1) ITG-like
turbulence may be strongly suppressed in the ST. The first direct mea-
surements of long-wavelength turbulence in the core of NSTX have been
made using homodyne radial correlation reflectometry. The system has
a frequency coverage of 26 —40 GHz (0.84 to 2.0 x 1013 cm 3 in O-mode)
and has been used to measure turbulence radial correlation lengths in
the core (r/a ~ 0.2 —0.8) of low beam power, L-mode discharges. Scans
were performed to observe the scaling of the turbulence and confine-
ment properties: B; and I, were varied simultaneously (constant g, p*
scan) and independently. Initial analyses indicate correlation lengths
in the range of 5-15 cm and decreasing with increasing local magnetic
field strength. Comparisons will be made with nonlinear gyrokinetic
simulations using the GYRO code.

1Supported by U.S. DoE Grant DE-FG03-99ER54527.
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Background and Motivation
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In the spherical torus (ST), it has been predicted that core transport due to
long wavelength turbulence (ITG, TEM - kgp.<1) may be suppressed by
increased ExB shear, T;/T, ratio and gradient (3 effects. Gyrokinetic linear
stability analyses of existing NSTX data suggest the growth rate of these
modes can be small.

Assessment of thermal transport via TRANSP for beam-heated discharges
on NSTX often indicate low levels for the ion channel.

Experimentally, direct measurements of turbulence have been carried out
in the edge using GPI, the fast reciprocating probe, reflectometry, interfer-
ometry, etc. These measurements all show large levels of long wavelength
turbulence.

Recently, correlation reflectometry has been used to measure turbulence
radial correlation lengths in the core of peaked moderate density profiles of
NSTX L-mode discharges. These are the first quantitative measure-
ments of correlation lengths in the core of the ST.
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Goals and Poster Content
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- For various discharge conditions, measurement and characterization
of radial correlation lengths and fluctuations levels (N.A. Crocker,
JP1.022) using reflectometry.

- Relation between correlation lengths and confinement properties.

Short and long term goals:

- Detailed comparison of correlation lengths with those predicted by
GYRO (D.R. Mikkelsen, JP1.020).

Poster Content

- Details of the homodyne radial correlation reflectometer hardware
and data analysis method.

- Initial measurements for low-density L-mode discharges with NB-
heating.

- Analysis of data from attempted p* scan.

-  Effects of fast-ion induced MHD for NB-heated shots on correlation
length measurements.

- Summary and future work.
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Previous Measurements with 20-30 GHz Reflectometer

NSTY ——

(M. Gilmore, US-EU TT3F Workshop, 2003)
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Measurements utilized 20-30 GHz microwave source
(cutoff density ~0.50-1.1x1013 cm3).

Homodyne radial correlation reflectometry.
NBI heated low-density L-mode plasmas.
Cutoff layers (30 GHz) 4-8 cm inside LCFS.

Fluctuation frequencies 20-500 kHz correlated.
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Principle of Homodyne Radial Correlation Reflectometry
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Principle of Radial Correlation Correlation Coefficient Function Correlation Coefficient Function
Length Measurements vs Swept Frequency Envelope vs Radius
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- Fixed frequency f, and swept frequency f, with identical launch and receive

horns reflect from different cutoff layers in the plasma.

« Correlation coefficient function of homodyne signals x and y is modulated
by the swept DC phase of f,. ((x= )= 0)

P Tt (-]
Envelope of correlation coefficient function mapped from from frequency to
radial position using density profiles from Thomson scattering.
« Correlation length L_ is defined here as the e-folding distance of the
correlation coefficient function envelope (best fit to Gaussian).
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Details of Current Reflectometer Hardware

Fixed Frequency

13.5-20 GHz  Multiplier Isolator
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-6 dB  Amplifier DC Block Power Splitter

@—|x2 -10dBj_ —»

DC Block

JW\/—|>_| I__%>——>

Rectangular Rotary Waveguide Joint

Waveguide

Conical Horn

Launch

7 O .

IF Amplifier Mixer Isolator DC Block Power Splitter 5 N .

IF1 |l Circular to
i] | [ S sveCtang}ld'ar Circular Waveguide
Receive aveguiae : :
Swept Frequency Transition Mica Window
o Coax to Waveguide
13.5-20 GHz Multiplier -6 dB Isolator DC Block Adapter
Op W—{>—
-10 dB Mixer Isolator
Delay Line -+ —| I—
Amplifier DC Block DC Block

IF2

~—H

IF Amplifier

« 26-40 GHz, ncr~0.85-2.0x1013 cm’3,
» Voltage-controlled HTOs for fast sweep

rates.

» Both source and DAQ (8 MSa/s) PC-

controlled.

» ~14 ft of coaxial cable (roundtrip)
between equipment and machine.

« Launch and receive polarization
determined via rotary waveguide joint.
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Reflectometer Diagnostics at NSTX Midplane
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Discharge Waveforms and Reflectometer Signals
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Frequency Sweep Linearization & Path Length Adjustment

Tuning Voltage [V]
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d¢ AL dfy
R
dt c dt >
AL = difference between probe Q
and reference paths
frf = microwave frequency
cos ¢ = fringe pattern of p,
 Reference path length L is fixed. Probe
path length Lp depends on transmission
line (coaxial cable or L,) and plasma profile.
Te
AL =2 [t fu)dr + L) = Lol
Ta
plasma C(;rrltribution

* Number of fringes per full band sweep
adjusted by varying cable length.
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Details of LCr Estimates and Normalizations

Averaging window T for p_ must be small
to catch fringe pattern (T~50 us). Larger T
reduces variance but smooths peaks.

Significant fringe peaks identified by height
and spacing.

Error in Lclr can be several cm from uncer-
tainty in MPTS measurements.
T, T,

For L, of several cm, background n_, T_,
and B profiles can change significantly over
this distance. For gyroradius normalization,
these values are taken at the midpoint
radius between the the fixed frequency
cutoff and the 1/e location.

For L . estimates, an alternative to Py
coherency function Yyy-

(G.n o2 [RWDG.)r

is the

. _
T XD R (AT

Since good time resolution is required to
resolve fringe peaks, Py is used exclusively
here.

Airy width w,; =0.48 L 13\ *3~1 cm.
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Effect of averaging window T.
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Experimental Conditions for p* Scan

Various scans were performed:

- p*scan at constant q: B;=3.25-4.4 kG with
corresponding Ip=580-850 KA.

- |, Scan at fixed B;=4.4 kG: | ) =680-850 KA.

- B, Scan at fixed Ip=680 kA: B;=3.7-4.4 kG,

Scan of radial location by changing fixed
frequency of correlation reflectometer: 30, 35,

and 40 GHz (n_=1.1, 1.5 and 2.0x10"3 cm-3).
Shots with similar profiles at different

conditions were difficult to find.

- At lower B, MHD and beam-driven instabili-
ties (fishbones, TAEs, CAEs?) a problem.

- Collapse of T, and n_ due to pressure peak-
ing during middle of discharge.

Three comparisons presented here:

- p* scan: B;=3.7 and 4.4 kG, p~0.45 and 0.65.
- p* scan: B;=3.25, 3.85 and 4.4 kG, p~0.7.

- Radial scan for B;=4.4 kG, Ip=850 KA.
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p* Scan: L_~5-12 cm at p~0.45 and 0.65
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p* Scan:

L.~4-8 cm at p~0.7

L . vs Local Field Strength

NSTY ——

L_./p, vs Local Field Strength
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Radial Scan: L_~2-12 cm at p~0.55-0.75
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L __vs Normalized Radius L _ /p.vs Normalized Radius
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Effect of Fast lon Induced MHD
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Effect of Fast lon Induced MHD (continued)
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Summary
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L., measured in the core of the ST for the first time. Measurements
made in peaked moderate density plasmas in beam-heated L-mode
discharges.

During current flattop, values of L . in the range of 2-12 cm measured over
p~0.45-0.75. L /p,ranged from 3 to 18.

- Smallest L, at the largest radius and magnetic field. L increases
inversely with radius and magnetic field.

- For matched profiles in the p* scan, L_/p, at a given p is roughly
independent of B.

- L,/pg increases towards the core (magnitude varies for different
discharge conditions).

For NB-heated discharges, fast-ion induced MHD can be dominant source
of high frequency fluctuations in the homodyne signals instead of turbu-
lence. While large amplitude oscillations tend to reduce the correlation,
small amplitude ambient oscillations may contribute to the measured
correlation lengths.
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Future Work
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Further analysis to determine the contribution from fast ion driven MHD
will require investigating a larger data set including RF-heated and
ohmic-only discharges (with no beam-driven instabilities).

Correlation with confinement properties for various discharge conditions.
Role of magnetic shear will require further measurements with MSE.

Understanding of turbulence-driven transport mechanisms in will require
detailed comparison of measured correlation lengths as well as phase
(density) fluctuation levels and spectra with those calculated from the

output of GYRO. Use of 2-D full-wave reflectometry simulations using
the GYRO output as input.
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