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Outline

I.    Microstability analysis of High density H-mode 108730
shows robust tearing parity drift mode in plasma core

  -  Mode subdominant to twisting parity mode in collisionless limit

II.   Experiments on NSTX at low density have lower electron losses
 (Stutman, IAEA-2004, APS-2004 invited, NI-1.001)

-  Microstability calculations of six NSTX plasma conditions

-  Find tearing parity modes at high density, with high electron losses

-   Find absence of tearing parity modes at low density
and low electron losses



I. Microstability Analysis of High
Density H-mode 108730



NSTX: NBI in MHD Quiescent Discharge:
Ti > Te, Resilient Te Profiles

LeBlanc-EPS-03

Ip = 0.8 MA

BT = 0.5 T

PNBI = 4 MW

ENBI= 90 keV

bT = 16%

W = 0.23 MJ

108730



NSTX H-mode: Te(r) Resiliency

During H-mode
Te(r) remains resilient
electron density increases
ion temperature decreases

Examine microinstability
 Growth rates at 3 zones

What clamps
Electron temperature profile?
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q profile: fit to external magnetic data
a) partial kinetic EFIT model
b) magnetic diffusion model

Need MSE measurement



NSTX: Examine ITG and ETG Microstability

Find: tearing parity eigenfunction, with broad wave vector spectrum γ(k⊥r i)
ITG instabilities, with symmetric eigenfunctions and parabolic γ(k⊥r i)

t=0.6s positive shear



NSTX H-mode: At Plasma Edge
ITG Modes Intrinsically Above Marginal Stability
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Drift Modes far below Marginal Stability

when ExB Shearing Rate Subtracted.

Hybrid root changes from TEM to ITG character

above experimental a(grad Ti)/Ti.

kperp rho-i ~unchanged as a(grad Ti)/Ti is reduced.
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is near marginal stability for ITG

and above marginal stability for TEM drift modes.

Drift mode with maximum growth rate

changes from ITG to TEM as a(grad Ti)/Ti decreased.

Find two critical gradients, for distinct ITG and TEM roots.

ExB shearing rate ~ maximum growth rate: ITG likely stable.

NSTX ITG Near Marginal Stability at 0.8r/a
With 25% error bars on shearing rate, ITG possibly stable with

2-3γITG > ωExB criterion
What should be the criterion for ITG stability?

 Dimits (PoP 2001) requires 4γITG> ωExB
Nonlinear Calculations including ExB shear would resolve this



NSTX: ETG Instrinsically above Marginal Stability
At Plasma Edge: ωExB < 2γITG

Fastest Growing ETG Drift Mode Wavelengths
and Growth Rates Decrease as a(∇Te)/Te is Reduced

Higher Critical Gradient for ETG than TEM, Similar to ITG
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Convergence tests
Eigenfunctions of electrostatic 

and electromagnetic fields
for 0.6 sec and r/a= 0.25 
at k⊥ρs=0.5 

Seventeen 2π extent 
of field line length needed
to confine eigenfunctions

Corresponds to a very large 
radial width in the
simplest approximation
width of A//=Δθ ~1radian

Resonant trapped particle instability
at each field period



Broad spectrum of unstable modes

What causes 
high electron diffusivity?

Plasma core:
Find only long wavelength 
microstabilities:
neither ITG nor ETG,
exhibit tearing parity,
rotate in electron drift direction

At 0.65r/a modes extend
To smaller wavelengths than 
At 0.25r/a



Connor Condition Satisfied for Linear Instabilities

Connor, Cowley, Hastie (1990) examined linear instability conditions
for tokamak microtearing mode in the intermediate collisionality regime
For ηe,ηi=∞, instability occurs only if ∂rTi>∂rTe. Dispersion relation:

Broad spectrum: weak, well converged modes with tearing parity
k⊥ρ=0.1 to 0.8 at r/a =0.25 at 0.6 sec and
k⊥ρ= 0.1 to 1.0 at r/a=0.65 at both 0.4 sec and 0.6 sec.

Well converged, unstable modes with mixed parity
at higher wavevectors, up to k⊥ρs<2−3  at r/a =0.65 at 0.4 and 0.6 sec.

At 0.4 sec, unstable growth rates at r/a =0.25 are smaller
and the modes, aside from k⊥ρs=0.1, do not have tearing parity.

Connor condition is satisfied in NSTX core,
except r/a =0.25 at 0.4 sec, where no tearing parity mode was found.

  

! 

"

(
*e

T

# )
= $

1
ˆ C %ln% +

2
ˆ C 

&'
e

*e

T

#
$

3
ˆ C 

'
e

*e

T

#
$

4
ˆ C 

*e

T

#
'

e



What is the radial width of the µtearing mode?

• Corresponds to a very large radial width in the
simplest approximation

• Width of A//=Δθ ~1radian. Estimate <kx>=<ky>·rq'/q·Δθ. 
With <ky> = 0.5/ρs, rq'/q = 0.15, Δθ = 1.2 radians, 
Then Δx=2π/<kx>=84ρs~84ρi.  

• Near the plasma core ρi = 0.017 m, 
leading to the radial width of the tearing mode: 
Δrtearing~1.4 m > amid=1.2 m, the plasma minor radius. 

• More detailed calculations are needed 
to properly answer this question. 



Without collisions,
  the twisting parity,
  electrostatic mode
  becomes dominant.

Microtearing Instablity at 0.65r/a: effect on NSTX transport?



NSTX: 108730  Good ion confinement correlated with ITG stability

unstable 1.9MHz/0.9
MHz

unstable 0.07MHz/
unstable 0.22 MHz
 (ExB stabilized)

 >> χi< χneor/a=0.80

unstable(0.36MHz )/
stable

unstable µtearing0.02MHz/
unstable µtearing 0.02MHz

>> χi< χneor/a=0.65

stable/
stable

stable/
unstable µtearing 0.02MHz

 >> χi< χneor/a=0.25

  ETG     ITG,µtearing     χe      χit=0.4/0.6s

Poor electron confinement: core µtearing, edge ETG
  Resilient Te profiles: likely due to unchanged

        µtearing, ETG core driving forces (a∇Ne/Ne, a∇Te/Te)

If 2-3γlin< ωExB stabilizes ITG, ITG may be stable everywhere.
 ωExB suppression of ETG and microtearing modes not yet known

Need MSE for q profile data. 

Does ExB shear suppress microtearing instability?



II. Microstability Analysis of Five 
NSTX Plasma Conditions

 -  Preliminary calculations

 -  Additional convergence studies needed

 -   q profile measurements needed



Low density L-mode
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Non-elming, MHD quiescent, mid-density H-mode

Microtearing unstable at midradius
ETG unstable at midradius and 0.8r/a, 
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High density H-mode
Midradius: Long λ microtearing unstable, ETG not strongly growing

At r/a=0.80 ETG unstable
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Nonlinear Simulations are in Progress

• Nonlinear simulations are in progress on
 NERSC’s IBM SP RS/6000 supercomputer, 

using 336 processors on 42 nodes, with 4MB memory 
per processor and GS2 compiled for 64 bit addressing

• Computational domain: 758 million meshpoints 
in a rectangular box (at the outside plasma midplane) 
with 15 ρ in the x direction and 63 ρ in the y direction. 

• Nonlinear terms evaluated on a grid with 
243 points in x and 27 points in y

 for 9 ky modes ≤ 0, 161 kx modes, after dealiasing.

• Generalize rule for determining the number of kx modes: 
Nx≤(2πrq'/q)•Ny•(Lx/Ly)•(Np-1)/2 
when more than one field period for necessary 
eigenfunction connections. Np=number of 2π field periods 



• Linear microstability analysis of ST experiments at high density
show tearing parity electrostatic eigenfunctions (Redi, EPS-2004)

    -    For decades µtearing modes were suggested to lead to high χe

      -    µtearing consistent with Connor, Cowley, Hastie PPCF 32 (1990) 799.

• Calculations: µtearing mode is subdominant to twisting parity
under collisionless conditions (Redi, EPS-2003)

    -    NSTX experiments:  low density ST plasmas
> have reduced electron losses (Stutman, IAEA-2004, APS invited)

     > microstability calculations: µtearing weaker, ETG unstable
     - “Edge” modes r/a>0.5 on NSTX are tokamak-like, twisting parity
     - High density H-mode: high χe, strong µtearing mode

• ηi fluctuations <0 in H-mode experiment
     - Microstability ηi scan suggests tearing microstabilities present

• Nonlinear calculations require considerable resources; are in progress.

CONCLUSIONS


