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ECE from #8694 ELM-free H-modeECE from #8694 ELM-free H-mode ConclusionsConclusions

:Current theoretical model incorporates nearly all the details of the MAST.
:ECE antenna and plasma model based on experimental data.
:For L-mode, agreement between calculated and experimental EBW emission is 

good.
:For ELMy H-mode, agreement is good but model does not explain the smaller 

signal at lower frequency part within each harmonic bands.
:For ELM-free H-mode, simulation based on EFIT equilibrium agrees with 

experiment at higher harmonics while using SCENE equilibrium provides 
higher magnetic field at the plasma surface and better agreement at lower 
harmonics.
:These results show that EBW emission can provide an additional constraint for 

equilibrium reconstruction.  
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Simulated ECE power detected by the antennaSimulated ECE power detected by the antenna

Fig. 5: Density and electron 
temperature profiles for the shot #7798 

Fig. 8: Plasma slab 
construction

Fig. 11: Time evolution of 
36.46GHz ray #1, shot #7798, 

Fig. 12: Ray-tracing of the EBW packet, 
shot #7798, 240ms, f=36.46GHz

Fig. 6: magnetic potential for the shot 
#7798, time 240ms, UHR=36.46GHz

Fig. 9: Samle contour map of 
conversion efficiency projected to 

the second waist plane

Fig. 7: Intersection of the antenna 
beam with the LCFS

Fig. 10: Sample electric field 
computed by the adaptive finite 

3D plasma model

EFIT
Thomson scattering

:A realistic 3D model of the MAST plasma has been developed for the 
simulation. The magnetic field is reconstructed by splining of the two 
potentials determined by the  code, assuming toroidal symmetry
:The temperature and density profile are obtained from the  

measurements, beyond the LCFS exponentially decaying profiles are used
:Separate sets of straight rays are used to project the rim of window and the 

visible area to the second waist plane. Such an approach takes into account the 
shape of Gaussian beam in a near antenna and in far antenna regions properly
:Intersection of the antenna beam with the LCFS (last closed flux surface) 

determines the position of the spot used for the ray-tracing and conversion 
efficiency computations

Conversion efficiency computation
Fullwave solution weakly collisional cold plasma slab

singularity at UHR

:  of the Maxwell’s equations in the  is used for determination 
ndof the EBW-X-O conversion efficiency. This implies numerical solution of a set of the 2  order ODE's with a 

:At the intersection of the rays with the LCFS ("spots") we construct an auxiliary 
plane stratified slab inhomogeneous along the local density gradient
:The power absorbed in the vicinity of the upper hybrid resonance due to weak 

collisions corresponds (if n/fà0) exactly to the power converted to the electron 
Bernstein waves. The reverse process is adequate for ECE because we can assume 
reciprocity between emission and absorption
:The conversion efficiency must be computed for all (41 in our code) rays at each 

frequency in the frequency range. Recently developed code with adaptive mesh 
refinement is used for fast computation

Radiative   temperature   and   EBW   absorption
Ray-tracing

Non-local reabsorption

Rayleigh-Jeans

:  code is used for the motion of EBW packet.  
The evolution equation for the power has to be integrated 
simultaneously with the ray
dP/dt=-2g(t)P
:  of the radiation is described by 

the radiative transfer equation dP/dt=h-aP, which must be 
solved simultaneously with the ray evolution equation
:The emitted power can be expressed by  

2
law with T  instead of local temperature T: P~w Trad rad

ECE   intensity
:The intensity of ECE detected by the antenna can be 

expressed as

-Gauss weight (w  is the wais radius)0

-conversion efficiency
-Rayleigh-Jeans black body radiation law
-power transmission coefficient of the 

MAST window
- relative visible area (w is the Gaussian 

beam radius at the plasma surface)
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Fig. 3: Power transmissed trough MAST 
window (N =1.97, thickness=0.08m), quartz

incident ray j =18°, j =22°,  the angle of dev long

incidence on window = 28° 

Fig. 4: Intensity of Gaussian beam in MAST antenna system for f=40GHz, W  are the waist positions01,02

Fig. 2: MAST ECE antenna 
system setup

:The MAST ECE antenna system consists of a horn, two 
mirrors (the second one is adjustable) and the plasma-
vacuum window (fig. 2)
:The wave propagation through the system is solved by 

st
:At the 1  waist (w , see fig. 4) the beam is detached from 01

nd
the horn, the 2  waist w  is the projection of w  by the lens02 01

Gaussian beam formalism

:Only  waves are detected 
by the radiometer
:The polarization is changed at the mirrors

linearly polarized

:At the window the wave is partly reflected 
(see fig. 3) and its polarization becomes 
slightly elliptical
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Fig. 1: Cutoffs and resonances in MAST 
cold plasma for normal incidence, shot 

#7798, 240ms

:Extensive ECE data are available for 
MAST (Mega Ampere Spherical  
Tokamak) in the frequency range 

:The  and 
 do not permit the usual radiation of 

O and X modes from the first five electron 
cyclotron harmonics
:Only  (EBW), 

which are unaffected by the density limits, 
can be responsible for the measured 
radiation
:The EBW are converted to the X mode in 

the upper hybrid resonance (UHR), which 
then propagates outside the plasma or it is 
converted to the O mode in the plasma 
resonance. The mode converted O mode 
then propagates outside the plasma

16-
60GHz

low magnetic field high plasma 
density

electron Bernstein waves

A b s t r a c tA b s t r a c t

ECE simulation based on EFIT and SCENE magnetic equilibria in MAST 
is compared with detected signal. Nice fit is found for the L-modes and 
ELMy H-mode where both models give the same results. ECE from ELM-
free H-mode has rather intricate structure and our models do not fit well 
with experiment. Simulation, based on EFIT, predict proper number of 
EC bands but their position is better estimated by SCENE which takes into 
account the edge currents.

Fig. 16: Radial profiles of characteristic resonances at beam spot 
(j = j =12°) demonstrate clearly the difference in equilibria.dev long

Fig. 13: ECE from MAST, 
shot #7798, time 240ms, 

reference frequency 
23.14GHz. The fit is 

significantly improved with 
appropriate beam direction
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Beam direction and equilibria effects for #7798 L-mode and #4958 ELMy H-modeBeam direction and equilibria effects for #7798 L-mode and #4958 ELMy H-mode

Fig. 15: With the appropriate beam angles the 
agreement with the experiment is good for both 

SCENE and EFIT equilibria but the decreases of ECE 
at the beginning of the second and the third EC band 
are not described well by any of the simulations. This 

is typical for ELMy H-modes.

Effec t s   o f   t h e   b eam   d i r ec t i on
:The best fit between measured and simulated ECE is obtained when 

different beam directions are assumed theoretically over the 
experimental antenna adjustment

:Beam direction is determined with precision to ±5°
:Diffraction of beam in rarefied plasma in SOL
:Magnetic equilibrium differs from that determined by EFIT

Explanation:

C o m p a r i s o n  o f  E C E  s i m u l a t i o n  f o r  E F I T  a n d  S C E N E  e q u i l i b r i a

15 20 25 30 35 40
f [GHz]

0

0.5

1

1.5

In
te

n
si

ty
o
f
E

C
E

[a
r.

u
.]

ECE signal

ECE simulation, EFIT,   jdev=17o, jlong=17o

ECE simulation, SCENE,   jdev=17o, jlong=17o

ECE simulation, SCENE,   jdev=18o, jlong=17o
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Fig. 14: Shot #7798 L-mode, ECE 
simulation fits well to detected signal for L-
modes, SCENE [3] and EFIT gives similar 

results. Waves with f<23 GHz are converted 
in SOL where plasma density strongly 

fluctuates and our model of ECE does not 
catch this situation properly.
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Fig. 17: ELM-free H-mode (#8694) simulation 
based on  equilibrium.EFIT

Fig. 18: ELM-free H-mode (#8694) simulation 
based on  equilibrium.SCENE

E F I T

SCENE

:Simulated and detected signal do not require additional beam aiming adjustment (new antenna calibration works well)
:Magnetic field at UHR predicted by EFIT is too low (periodicity of the detected ECE requires f =11 GHz, but EFIT ce

gives f <10 GHz)ce

:Shapes of the peaks in the simulated EFIT signal in higher bands resemble well the detected signal

:Surface currents considered in SCENE enhance magnetic field at UHR, but f =12 GHz is too highce

:Shapes of peaks of simulated signal do not correspond to the detected ones.
:Only four bands do not correspond to five band in detected signal

Fig. 19: Time development of ray, shot 
#8694, f=20.84 GHz, N=2. ECE is 

ndradiated from the 2  harmonic. N  ||

strongly oscillates and the absorption 
is highly non-local. The absorption on 

the 3rd harmonic is negligible.

Ray-tracing can explain the peaks shapes in EFIT simulation
:Detailed evolution of central rays was studied for frequencies slightly 

below & slightly above the plasma surface electron cyclotron harmonics.

Fig. 20: f=49.44 GHz, N=4. Even if f<5f , ce
thwaves are emitted from the 5  harmonic. 

Because the factor |(w-5w )/N v | ce || T

decreases faster then |(w-4w )/N v |. ce || T

|N | increases monotonically and reaches ||

1 at the absorption region.

Resonance topology
:Radial profiles of characteristic resonances at beam spot 
demonstrate clearly the difference in equilibria.
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:Waves are emitted from well of the electron 
cyclotron resonances.
:#8694, t=0.280s, j =12°, j =12°. dev long

We depicted situation at the end of 
EBW ray, when |N |=1 for waves ||

having f slightly bellow Nf  at the ce

plasma boundary and |N |=0.36 for ||

waves having f slightly above Nf  at ce

the plasma boundary. Broadening of 
N f  i s  g i v e n  b y  t h e  f a c t o r  c e

1/(1±3N v /c)|| T

Space dependence of characteristic resonances in MAST


