The role of magnetic equilibria in determining ECE in MAST

J. Preinhaelter ${ }^{11}$, V. Shevchenko ${ }^{2)}$, M. Valovič ${ }^{2}$, H. Wilson ${ }^{2}$, J. Urban ${ }^{11}$, P. Pavlo ${ }^{11}$, L. Vahala ${ }^{3}$, G. Vahala ${ }^{4)}$ ${ }^{11}$ EURATOM/IPP.CR Association, Institute of Plasma Physics, 18221 Prague, Czech Republic ${ }^{2)}$ EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK ${ }^{3)}$ Old Dominion University, Norfolk, VA 23529, USA, ${ }^{4)}$ College of William \& Mary, Williamsburg, VA 23185, USA

Abstract

ECE simulation based on EFIT and SCENE magnetic equilibria in MAST is compared with detected signal. Nice fit is found for the L-modes and ELMy H-mode where both models give the same results. ECE from ELMfree H-mode has rather intricate structure and our models do not fit well with experiment. Simulation, based on EFIT, predict proper number of EC bands but their position is better estimated by SCENE which takes into account the edge currents.

Simulated ECE power detected by the antenna

Beam direction and equilibria effects for \#7798 L-mode and \#4958 ELMy H-mode

Effects of the beam directio
-The best fit between measured and simulated ECE is obtained when experimental antenna adjustment
Explanation:
-Beam direction is determined with precision to $\pm 5^{\circ}$
Diffraction of beam in rarefied plasma in SOL
-Magnetic equilibrium differs from that determined by EFIT

Comparison of ECE simulation for EFIT and SCENE equilibria

Fig. 14: Shot \#7798 L-mode, ECE simulation fits well to detected signal for modes, SCENE [3] and EFIT gives similar results. Waves with $f<23 \mathrm{GHz}$ are converte in SOL where plasma density strongly catch this situation properly.

ECE from \#8694 ELM-free H-mode

- Radial profiles of characteristic resonances at beam spot demonstrate clearly the difference in equilibria. Fig. 16: Radial profiles of characteristic resonances at beam spot ($\varphi_{\mathrm{dvv}}=\varphi_{\text {long }}=12^{\circ}$) demonstrate clearly the difference in equilibria. Ray-tracing can explain the peaks shapes in EFIT simulation a Detailed evolution of central rays was studied for frequencies slightly

Simulated and detected signal do not require additional beam aiming adjustment (new antenna calibration works well) Simulated and detected signal do not require additional beam aiming adjustment (new antenna calibration works well)
Magnetic field at UHR predicted by EFIT is too low (periodicity of the detected ECE requires $f_{c e}=11 \mathrm{GHz}$, but EFIT gives $f_{c e}<10 \mathrm{GHz}$)
Shapes of the peaks in the simulated EFIT signal in higher bands resemble well the detected signa
SCENE Shapes of peaks of simulated signal do not correspond to the detected ones.
Only four bands do not correspond to five band in detected signal

Conclusions

- Current theoretical model incorporates nearly all the details of the MAST. - ECE antenna and plasma model based on experimental data.

-For L-mode, agreement between calculated and experimental EBW emission is | good. |
| :--- |
| For EL |

For ELMy H-mode, agreement is good but model does not
signal at lower frequency part within each harmonic bands. For ELM-free H-mode, simulation based on EFIT equilibrium agrees with experiment at higher harmonics while using SCENE equilibrium provides higher magnetic field at the plasma surface and better agreement at lower harmonics.
These results show that EBW emission can provide an additional constraint for equilibrium reconstruction.

Acknowledgement

Part of this work was funded jointly by UK Engineering and Phys. Sci. Council and by EURATOM. We would like to appreciate valuable discussions with J. Zajac.

References

[1] Shevchenko V. et al., $15^{\text {t" }}$ RF Power in Plasma, Moran, 2003, edit. C. Forest, AIP 694,
359 . 359.
[2] Laqua H.P., et al., review, $15^{\text {th }}$ RF Power in Plasma, Moran, 2003, edit. C. Forest, AIP [3] H.R. Wilson: SCENE, UKAEA FUS 271 (1974), Culham, Abingdon, UK [4] Preinhaelter J. e al, $15^{\text {th }}$ RF Power in Plasma, Moran, 2003, edit. C. Forest, AIP 694, 388 . [5] Urban J.: Adaptive Finite Elements Method for the Solution of the Maxwell Equations
[4] in an Inhomogeneous Magnetized Plasma, Diploma thesis, Czech Technical University in in an Inhomog
Prague, 2004
Prague, 2004 J. Kopecky V., J. Plasma Phys. 10, 1 (1973), part
[6] Preinhaeter J.,
[7] Pavlo P., Krlin L., Tluchor Z., Nucl. Fusion 31, 711 (1991).
[8] Goldsmith P.: Quasioptical systems: Gaussia, Beam Quasioptial Propagation and
Applications, Wiley-IEEE Press (1997)

