Toward High Normalized Current in the PEGASUS Toroidal Experiment

E.A. Unterberg for the PEGASUS Team:

D.J. Battaglia, M.W. Bongard, S.P. Burke, N.W. Eideitis, R.J. Fonck, B.A. Kujak-Ford, M.J. Frost, G.D. Garstka, M.P. Kozar, B.T. Lewicki, B.J. Squires, G.R. Winz

University of Wisconsin-Madison

Presented at the 47th APS-DPP Conference Denver, Colorado October 25, 2005

PEGASUS Extends ST Parameter Space

<u>Goals</u>

- Limits on βt and Ip/ITF (kink) as A→1
 Overlap between tokamak and spheromak
- Stability and confinement at high Ip/ITF
 Extension of tokamak studies
- Support ST development to next stage

Campaign Emphases

- Stability at high I_p/I_{TF}
 Explore kink stability limit in ULART
- ST development support
 - EBW tests for heating and CD (w/PPPL)
 - Noninductive startup techniques

Outline

PEGASUS Upgraded to Highly Flexible Facility

- Phase-I: "soft-limit" in I_p/I_{TF} due to low-A physics and limited discharge control
- Phase-II: facility upgrade \Rightarrow fully programmable power supplies \Rightarrow discharge control; flexibility

Recent Focus: Integration of Capabilities and Tearing Mode Mitigation

- Large array of upgraded capabilities nearly complete
- Phase-I operating space recovered and extended
- To-date: V-s $\sim 30 \text{ mV-s} \approx 1/3 \text{ maximum}$
- Mode mitigation experiments ongoing with increased discharge control
- Phase-II Campaign: Stability in Ip/ITF > 1 Regime; ST Development
 - Goal: $I_p/I_{TF} \sim 2-3 \ (I_N \sim 10-20)$
 - Stability and confinement modelling show attainability in PEGASUS
 - Electrostatic current injection and EBW heating development ongoing

Phase-I Defined a "Soft-limit" in Ops

- Maximum $I_p \approx I_{TF}$
- Soft limit due to 2 factors:
 - Tearing modes with rapid growth and large island widths
 - Reduced V-sec as TF decrease

- Crude manipulation of q(r) reduced mode amplitude
 - Increased shear, $q_0 \Rightarrow$ delay tearing onset
- \Rightarrow Access higher I_p/I_{TF} via higher q_0 , T_e , shear

Approaches Developed to Access High Ip/ITF

• Approaches and tools to increase I_p/I_{TF}

- Manipulate current profile

- V_{loop} control, position/shape control, $B_t(t)$

- Reduce η before low-order rationals appear
 V_{loop} control, position/shape control, RF heating (HHFW)
- Transiently increase q during startup - $B_t(t)$, V_{loop} control

Main facility modifications

- Power Supplies
 - OH: effective V-s f w/ increased waveform control
- Coil Sets
 - Lower inductance TF set: 60 turns \Rightarrow 12 turns
 - *PF Set: monolithic set* \Rightarrow 8 *independent sets*
 - Divertor coil set installed

Highly Flexible Experiment with Modular Programmable Power Supplies

• 250 MVA programmable power

- Economical, high-power, solid-state switches
- Impedence matched for each coil
- Allows more effective power with less stored energy

Large degree of coil arrangement flexiblity

- Up to 40 independent subsystems @ 4 kA available - 28 @ 900V
 - 12 @ 2700V
- PWM feedback gives msec time response (U.Wash)

Allows easy integration to active PCS system

- Real-time control under development with GA

Switchyard with the 40 subsystems

Transients across single switch in subsystem

New Tools ⇒ Discharge Control & TM Mitigation

• Large array of new capabilities developed; deployed into routine use

- Pre-programmed coil currents
- New wall conditioning and fueling
- Variable PF configurations
- Increased TF with time-variability
- Divertor coils

Integration underway to access new operating spaces

Operational Space Expanded

Phase-I operational space recovered and extended

$$I_p \rightarrow \sim 140 \text{ kA} \text{ ; } I_p / I_{TF} \rightarrow \sim 100 \text{ kA} \text{ ; } I_p / I_p$$

- m/n = 2/1 mode activity observed with ~ same magnitude as Phase-I

Discharge utilizing all available V-s

 $- \sim 30 \text{ mV-s}$ available vs. Phase-I 60 mV-s $\Rightarrow 90 \text{ mV-s}$ (full design)

Tearing mode mitigation experiments are ongoing

- Optimizing startup to navigate through MHD activity $\rightarrow I_p/I_{TF} > 1$

Modeling Gives Path for High Ip/ITF

- DCON: kink unstable regime $\sim q_{95} = 4$ and $I_p/I_{TF} = 2$
 - Further modelling at higher I_p/I_{TF} ongoing
- TSC: suggests accessibility \rightarrow I_D ~ 0.3 MA
- Confinement estimates suggest access to $\beta_t > 40\%$

 $\Delta^{\Delta \underline{A}}$ Δ \cap $\Delta \Delta \Delta \Delta$ $I_{D}/I_{TF}=2$ $I_{n}/I_{TF}=1$ O Unstable \triangle Unstable

3

q₉₅

4

Stable

 $q_0 = 1$ 2

PEGASUS Toroidal Experiment University of Wisconsin-Madison

▲ Stable

Future Directions: EBW System and Electrostatic Current Injection

Electrostatic Current Injectors installed and being tested

- Current amplification $\rightarrow 20X$
- Filament reconnection $\Rightarrow I_{\phi}/I_{GUN} \ge$ geometric stacking
- Closed flux surfaces requires field, gun optimization

EBW Raytracing (GENRAY)

Plasma Gun Injection w/ Filament Reconnection

• 0.5-1 MW, 2.45 GHz EBW system under development

- Provides convenient test bed for EBW physics in ST
- Experiments will be a collaborative effort with NSTX & PPPL
- Planned first heating experiments in 2007

Summary

PEGASUS Upgraded to Highly Flexible Facility

- Phase-I: "soft-limit" in $I_p/I_{TF} \sim 1$ due to tearing mode activity
- Phase-II: discharge control \Rightarrow 250 MVA available in H-bridge subsystem

Recent Focus: Integration of Capabilities and Tearing Mode Mitigation

- Large array of upgraded capabilities nearly complete
- Phase-I operating space recovered and extended (w/ 1/2 Phase-I V-s)
- Mode mitigation experiments ongoing with increased discharge control

• Phase-II Campaign: Stability in $I_p/I_{TF} > 1$ Regime; ST Development

- Goal: $I_p/I_{TF} \sim 2-3 \ (I_N \sim 10-20)$
 - Stability and confinement modelling show accessibility
- Electrostatic current injection and EBW heating development ongoing

Pegasus Poster Session

RP1 Session Thursday Afternoon

- **RP1.00051:** Overview of the Phase II Campaign, Squires et al.
- **RP1.00052:** Plasma Gun DC Helicity Source, *Eidietis et al.*
- **RP1.00053:** Active Plasma Control System, Bongard et al.
- **RP1.00054:** Electron Temperature Diagnostics, *Battaglia et al.*
- **RP1.00055: EBW Heating and Current Drive**, *Garstka et al.*
- **RP1.00056:** Modeling of EBW Propagation and Damping, *Diem et al.*