

Dissipative divertor experiments in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U SNL** Think Tank, Inc. **UC Davis** UC Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U Rochester U** Washington **U Wisconsin**

V. A. Soukhanovskii, R. Maingi, C. J. Lasnier, R. E. Bell, C. Bush, R. Kaita, H. W. Kugel, B. P. LeBlanc, J. Menard, D. Mueller, S. F. Paul, R. Raman, A. L. Roquemore, S. Sabbagh, NSTX Team 47th APS – DPP Meeting Oct 24-28, 2005 Denver, Co.

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

SOL and divertor physics in ST geometry are studied in NSTX

- Divertor heat load mitigation one of key Boundary Physics issues in large aspect ratio tokamaks, more so in Spherical Tori (ST)
 - Compact divertor small divertor volume
 - High edge q (8-20) smaller PFC plasma-wetted area
 - Typical divertor tile temperature in ~1 s NSTX pulses T < 300 C. Engineering limit is T = 1200 C. Long pulses will require steady-state heat flux mitigation solution
- Present focus is on divertor regime characterization and development of heat flux mitigation scenarios for plasmas with κ =1.8 2.5, δ =0.4 0.9, at low aspect ratio A = 1.35, $q_{out} < 6 \text{ MW/m}^2$, $P_{in}/R < 9$

Development of NSTX diagnostic set enabled detailed lower single null divertor studies in FY05

- Divertor IRTV
- Divertor/SOL cameras with $D_{\alpha},\,D_{\gamma},\,C$ III filters
- Neutral pressure gauges
- Divertor UV-VIS spectrometer
- Midplane and divertor bolometry
- Divertor and Center Stack Langmuir probes
- Midplane Multi-point Thomson scattering
- Gas Injectors at various poloidal locations midplane high field side (HFS), low field side (LFS), lower divertor _2 with inj. rates $\Gamma < 10^{22} \text{ s}^{-1}$

NSTX divertor regimes

- Observations and measurements:
 - Heat flux asymmetry always $q_{out}/q_{in} > 1$, typically $q_{out}/q_{in} = 2$ -4. Typical peak heat flux $q_{in} < 0.5$ -1.0 MW/m², $q_{out} < 2$ -6 MW/m² in 2-6 MW NBI-heated plasmas
 - Recycling in-out asymmetry up to 15 from divertor D_{α} profiles
 - Divertor D_{γ} observed in inner divertor only, typical ratio D_{γ}/D_{α} about 0.020 -0.030 - sign of volume recombination
 - High divertor neutral pressure (0.1-0.2 mTorr), neutral compression ratio is 5-10 (open divertor)
- Inner divertor leg is naturally detached throughout most of operational space, similarly to conventional tokamak divertors operating w/o pumping. Outer divertor leg is always attached, being in sheath-limited and high-recycling regime up to n_e ~ n_G

High $n_{e_{i}}$ low T_{e} inferred from Balmer series line emission measured in detached inner divertor

• Stark broadening of 8-2 line yields $n_e = 1.5 \times 10^{20} \text{ m}^{-3}$

- Line intensity ratios (Saha-Boltzman population distribution): $T_e = 0.3-1.0 \text{ eV}$
- Inner SOL MARFE oscillating between midplane and divertor often observed by visible cameras
- Inner divertor region is a cold dense opaque plasma
 challenge for modeling!

Fish-eye view of NSTX plasma

Inject D₂ to detach outer divertor leg

Injected D₂ at LFS midplane at 20 - 120 Torr I / s and / or lower divertor (LD) at 0 - 200 Torr I / s - found that D₂ poloidal injection location matters!

- Retained H-mode for 5 x $\tau_{\rm E}$ and detached outer leg with LD injection only
- Midplane injections quickly bring plasma to operational limits (confinement degradation, locked modes, large low *m,n* MHD modes)
- Concluded outer leg *partial* detachment from peak heat flux reduction, radial peak shift, and volume recombination onset (D_y/D_α ratio)

Outer leg partial detachment evident from peak q_{out} reduction and onset of volume recombination

- D₂ puffing from lower divertor
 - Decreases peak q_{out} by 4-5, with peak shift outward by up to 3 cm
 - -~ Broadens D_{α} and D_{γ} brightness profiles and increases outer leg D_{γ} / D_{α} ratio from typical 0.010-0.015 to 0.015-0.020
 - No change in detached inner divertor q_{in} < 0.5 MW/m², D_y/D_{α} = 2-3 x 10⁻²
- Apparently partial detachment
- Separatrix location from LRDFIT

🖳 ------ 🔘 NSTX---

Summary and Future work

- SOL and divertor physics at low aspect ratio are studied in NSTX
- Longer pulses may cause difficulties in divertor heat flux handling given the naturally occurring NSTX divertor regimes
- D₂ injections were used to detach outer divertor leg in 3-4 MW NBIheated L- and H-mode plasmas
- Signs of outer leg partial detachment were obtained in 4 MW H-mode plasmas with D₂ injections from lower divertor region: reduction of peak heat flux, shift of heat flux peak, and spectroscopic signatures of volume recombination
- Future work will focus on
 - further characterization of outer leg detachment
 - dissipative divertor scenario development for high δ,κ H-mode plasmas

Neon injections did not detach outer divertor

- Neon puffed into 4 MW H-mode
- Did not cause H-L transition
- Puffing rate 1.5 x 10²⁰ s⁻¹
- P_{rad} = 0.3 x P_{in}
- Outer peak heat flux reduced x4,

Stronger gas puff leads to stronger detachment

NSTX reference data

NSTX fueling

• Gas injection: low field side (LFS, top + side), high field side (HFS, midplane + shoulder), private flux region. D_2 , He, injected at S = 20 - 120 Torr I /s.

 \bullet Neutral beam injection system: three beams, 80 - 100 keV, 6 MW, fueling rate: S < 4 Torr I / s

Supersonic gas injection: S = 60 Torr I / s
 NSTX wall conditioning

- Between shots He GDC
- He conditioning plasmas
- TMB and Plasma TMB NSTX pumping
- Turbomolecular pump (3400 l / s)
- NBI cryopump (50000 I / s)
- Conditioned walls
 PFC
- ATJ graphite tiles on divertor and passive plates
- ATJ and CFC tiles on center stack
- Thickness 1" and 2"

Aspect ratio A	1.27
Elongation κ	2.5
Triangularity δ	0.8
Major radius R ₀	0.85m
Plasma Current I _p	1.5MA
Toroidal Field B_{T0}	0.6T
Pulse Length	1s
Auxiliary heating:	
NBI (100kV)	7 MW
RF (30MHz)	6 MW
Central temperature	1 – 3 ke

NSTX reference data

к	1.85
δ	0.4
Drsep (cm)	1.0-1.5
q _{edge}	13
L _{II} , inner (m)	8.3
L _{II} , outer (m)	6.0
M (Mirror ratio)	5.0
f inner (Flux expansion)	2-3
f outer (Flux expansion)	2-3

Tokamak (safety factor q = 4)

109033

poloidal index

UEDGE modeling guided detachment experiment

- UEDGE multifluid 2D edge code based on Braginskii equations
- Model divertor conditions $vs P_{in}$, n_{edge} for guiding purposes
- H-mode LSN equilibrium used
- diffusive transport model
- Impurities (carbon) included
- Outer midplane n_e , T_e profiles matched,
- D_{α} and IRTV not matched

G. Porter, N. Wolf

Attempt to change parallel momentum and power balance: $\frac{d}{ds}(m_i nv^2 + p_i + p_e) = -m_i(v_i - v_n)S_{i-n} + m_i vS_R$ $\frac{d}{ds}((-\kappa T_e^{5/2}\frac{dT_e}{ds}) + nv_{||}(\frac{5}{2}(T_i + T_e) + \frac{1}{2}m_iv_{||}^2 + I_0)) = S_E$ $V_A Sukhanovskii, 47h DPP APS Meeting, October 2005, Denver, CO$ 13 of 8

Development of NSTX diagnostic set enabled detailed lower single null divertor studies in FY05

Divertor IRTV

two Indigo Alpha 160 x 128 pixel microbolometer cameras, 7-13 μm range, 30 ms frame rate

• Divertor/SOL cameras with $\textbf{D}_{\alpha},\,\textbf{D}_{\gamma},\,\textbf{C}$ III filters

four Dalsa 1 x 2048 pixel CCDs, filter FWHM 10-15 A, frame rate 0.2 - 1 ms

Neutral pressure gauges

four microion gauges on top and at midplane, two Penning gauges in lower and upper divertor, time response 5-10 ms

High-resolution divertor UV-VIS spectrometer

ARC Spectro-Pro 500i, 3 input fibers, time response 15-30 ms, FWHM > 0.6 A

Midplane and divertor bolometry

midplane (AXUV radiometer array), divertor - ASDEX-type four channel bolometer, time response 20 ms

Divertor Langmuir probes

midplane - fast probe, tile LPs - I_{sat} , T_e measurements

Midplane Multi-point Thomson scattering

with 2-4 points in SOL

- Gas Injectors at various poloidal locations, R<10²² s⁻¹
- Enhanced shaping capability Lower Single Null, κ =1.8 2.5, δ =0.4 0.9

