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Abstract
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The adoption of the motional Stark effect (MSE) polarimetry
diagnostic is due to its very good temporal and spatial
resolution of the g-profile, combined with its exceedingly good
accuracy. This has resulted in many important scientific
contributions towards our understanding of stability and
transport. This work describes the implementation of the
MSE-CIF diagnostic on NSTX. Due to the low magnetic field
on NSTX the implementation of the MSE diagnostic requires a
different approach for the viewing optics and spectral filter.
The diagnostic views a heating beam with 8 inch collection
optics, imaged onto a fiber array. The optical system is
configured to maximize the polarization fraction by reducing
the Doppler broadening from the heating beam. This is done
with a vertical aperture in front of the collection optics to
reduce geometric Doppler broadening. In addition, a wide field
Lyot spectral filter with high throughput and high resolution has
been developed to achieve thenecessary signal-to-noise.
Results with the MSE-CIF diagnostic have been obtained at
magnetic fields >0.3 Tesla with eight channels providing
coverage from the magnetic axis to near the outboard edge.
The number of spatial channels can be increased to 19 in the
future. Results of various plasmas regimes including L-mode,
H-mode, and reversed shear will be presented.



MSE-CIF Status on NSTX
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8 MSE channels viewing from the
magnetic axis to outboard plasma edge
are operational

Working MSE channels are calibrated
using the beam-into-gas technique

Digital lockins provide in-between shot
analysis with typical 10ms time resolution

Magnetic axis and plasma edge
measurements match reconstructed data

NSTX experiments requiring MSE were
able to be carried out



MSE-CIF Layout on NSTX
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« 8 of 19 possible MSE channels presently
view from the magnetic axis to outboard
plasma edge

« Tangential sightlines at edge and center
provide optimal spatial resolution over a
wide field of view



Previous MSE systems operated using a high
field Stark multiplet, as shown by TFTR spectra
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e E = vV x B electric field is ~ 200 kV/cm at 4.5 T,

resulting in a spectral splitting.

e Am = 0(+£1), w(o) component, are polarized par-

allel (perpendicular) to the electric field.

e Spectral linewidth is determined by geometric

broadening and beam temperature.

e Spectral overlap between m and o lines reduces

polarization fraction and signal-to-noise.



NSTX requires MSE to operate at Low Field
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e Numerical convolution of the MSE spectra in-

cluding filter, beam, and optics broadening.

e Using conventional MSE approach overlap of

spectral lines leads to a low( ~1%) polarization

fraction. This is too low for a measurement.

¢ With improvements in the optics design and fil-

ter, the polarization fraction can be raised to

~30% at 0.3 T making a measurement feasible.



MSE-CIF at Low Magnetic Field
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¢ INnnovations improve the polarization fraction.

1. Optimize optics to reduce geometric spectral

broadening.

— Spectral broadening is from the finite op-
tics and image size. Optimization of the

optics can reduce the spectral width.

2. Development of high resolution, high through-

put filter to extend measurementsto  ~0.3 T.

— Wide field Lyot type birefringent filter meets

reguirements.

e Development of MSE-LIF. Further information at
Posters BP1.089 and FP1.058.



Relative Intensity

Novel Optics Design to Reduce

Geometric Doppler Broadening
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e Novel optics design, combined with high through-
put, high resolution birefringent filter, can in-

crease the polarization fractionto  ~30%.



High Resolution, High Throughput, Lyot
Spectral Filter
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Birefringent crystal

N

Birefringent crystal

Polarizer-45 °

~— Half-wave plate 45°

I'=(27/\)And
™\ T = cos2(I'/2)

Polarizer-45 °

Single Stage Filter
e Required resolution and throughput can be sat-
isfied with a wide-field birefringent Lyot type fil-

ter.

e Flexibility in combining multiple stages to form

spectral filter.
e Unique feature — electro-optically tunable.

¢ Increased luminosity by a factor of 20-1000 rela-
tive to other instruments (grating spectrometer,

Fabry-Perot, interference filter).



Four Stage Filter Transmission
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e Filter data for 4 stage configuration.

e Wavelength is tuned electro-optically.



Birefringent Filter on NSTX
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e Measured transmission of BIF filter.

e Five stage filter now used on NSTX.



Filter and Optics Enclosure
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* Enclosure containing Lyot Filter, collimating and
focusing optics, APD detector, HV for wavelength
tuning, and temperature control

« Compact and modular design allows easy access
for maintenance and upgrades

« Achieved a spectral FWHM of 0.062 nm



Birefringent Interference Filter(BIF) has

Large Throughput Advantage
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Instrument input | AX(nm) | f/# Etendue Trans- | Luminosity | Relative to
aperture mission BIF
A(mm?) U(mm? — sr) t U *t
BIF(NSTX) 59.7 0.062 1.2 32.6 10% 3.3 1
Fabry-Perot 1 0.062 1.2 5 25% 13 1/25
Grating(ref.) | .04 1 5. 10-2 80% | 8 x 10~* | 1/(4 x 10%)
Grating(trans) | .04 1 |18 102 80% | 8 x 10~3 1/400

e BIF is tunable, but slowly at this time. A rapid

tuning version is possible, but some R & D re-

quired.

e Multi-spectral channel applications:

Rapid tuning of BIF makes it more attractive than

Fabry-Perot or grating spectrometers, even in-

cluding disadvantage of single wavelength scan-

ning.




Fiber Optic Holder
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e View of fiber holder with a few fiber ferrules in-

stalled.

e Fiber holder is now fully populated and installed

on NSTX.



MSE & CHERS Fiber Optic Holder
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e View of fiber holder with a few MSE fiber fer-

rules installed.

e CHERS fibers are the small fibers in the mid-
plane. Ratio of light collection is about 1000:1.



Output Fiber Optic Holder

Nova Photonics, Inc.

e Fiber optics bundle for a single sight-line.

e /6 X 1 mm diameter fibers.



Doppler Shifted Beam Emission
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e “First Light” was observed Jan. 2004.

660.0

e Spectrometer data from 90 kV deuterium beam

at0.3T.

e Data compares well with model including beam

divergence, geometric broadening, and Stark shifts.



Intensity and Polarization Model
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e Model of intensity and polarization including bire-

fringent filter for 0.3 T.

e ODbtaining this polarization fraction is key to a

successful measurement.



Polarization Data

0.4
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e Polarization fraction model is consistent with

data.



Primary Calibration performed
using Beam into Gas

MSE PA (deq)

Residual (deg)
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Measurement during beam into gas-filled torus
using a range of pitch fields created using TF and

PF coils.

MSE measurements are calibrated against EFIT
vacuum field reconstructions.
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MSE Instrumental Response
Well Characterized
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Sinusoidal component in instrumental response
has same functional form as fixed polarizer
calibrations, quantitative reconciliation of fitting
coefficients is ongoing.

MSE responses characterized fitted using the
functional form:

Ymeas=Po + P1Verr + P2 COS(ver11P3)
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Calibrations at Varying Toroidal fields
shows linear Faraday Rotation
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» Coefficients unchanged between June and Sept.
calibrations at multiple toroidal fields.
» Optical Faraday rotation can be fitted to a linear
function of field as expected.
* Red point shows predicted Faraday rotation data from
three shots at 5.5 kG.

MSE Calibration Offset vs Toroidal Field
(Black—data, Blue—linear fit)
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Calibrations at Varying Toroidal fields
shows linear Faraday Rotation
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* The fitted linear Faraday rotation coefficients vs. radii is
shown.

 MSE optics are positions close to a TF colil, and
experiences ripple/fringe fields with complex patterns

 Polarimeter zero offset can be determined from zero
crossing of fit.

MSE Faraday Rotation vs TF, OFFSET TERM (includes polarimeter offset)
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Magnetic Axis R [cm]

Magnetic Axis measured by MSE
matches reconstructions

Black- MSE

Black- Wyyp [0.1MJ]

Nova Photonics, Inc.

The zero crossing of MSE pitch angles are mostly
consistent with EFIT magnetic axis location, high
B plasmas benefit from MSE constraints
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NSTX reconstructions using MSE
Internal constraints

Pitch Angle [deg]
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MSE constrains internal pitch angles in magnetic
reconstructions

Constrained g-profiles to be corrected from
monotonic to reversed-shear (and vice-versa)

g-profile g-profile
(Blk - MSE constrainted, Red - no MSE)

(Blk - MSE Constrained, Red - no MSE)
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MSE uses v, from CHERS for E,
Corrections...
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MSE Pitch Angles (Red - E(vy) corrected)
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but requires vy and Vp for the edge
channel in H-mode
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« Edge channel(s) can, in certain plasmas, be affected
significantly by v, and Vp, which are not presently used
to correct the edge MSE channel
 Edge MSE channel(s) will be corrected using TRANSP

Nclass calculations of v, or better yet with measured v,
from the Edge Rotation Diagnostic (R>140cm)

« Estimates indicate approximately a up to 10% effect for
the edge channel.
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MSE Measurements during
HHFW Current Drive

High Harmonic
Fast Wave current
drive experiment
were carried out

using MSE o

MHD activity may
have diminished
current drive
effect

More shot
development of
current drive
scenarios with
NBI needed

Yo
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Time averaged g-profile, 300-460ms [6ms slices]
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Plasma with a Current Hole

Pitch Angle [deg]
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Shot 117820 produced a high performance, steep edge
gradient plasma with an interesting pedestal.

During the early part of this plasma, MSE measured a
“current hole” of substantial maximum size (>12cm), with
a period of large g, lasting for >100ms.
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Summary
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MSE-CIF on NSTX uses novel sub-A,
high throughput, tunable, birefringent

Interference filters necessitated by low
field.

MSE had 8 (of possible 19) channels
calibrated and routinely operating for the
NSTX 2005 run campaign.

Beam-into-gas calibrations shows
predictable and consistent behavior,
allowing for significant data reduction.

Magnetic reconstructions and MSE show
decent agreement for typical, monotonic
g-profile plasmas. Work is ongoing to
Improve agreement for reversed-shear
and/or high 3 plasmas

E, corrections presently only include the
v, term, edge MSE channel(s) requires
the inclusion of vyand Vp terms





