Lodestar

College W&M

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

New York U

Princeton U

UC Davis

UC Irvine

U Colorado

U Marvland

U Rochester

U Wisconsin

U Washington

UCLA

UCSD

Think Tank. Inc.

Comp-X

INFI

LANL

IINI

MIT

ORNL

PPPL

PSI

SNL

Lodestar

Colorado Sch Mines

Blob birth and transport in NSTX: GPI data analysis and theory

J.R. Myra, D.A. D'Ippolito, D.A. Russell Lodestar, D.P. Stotler, S.J. Zweben, *PPPL*, R. Maqueda, *Nova Photonics*, J. Boedo, *UCSD*, T. Munsat, *U. Colorado*, and the NSTX Team **47th APS – DPP Meeting** Oct 24-28, 2005, Denver, CO

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvoao U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAERI Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep U Quebec

Background & Motivation

Lodestar

- **Programmatic: ITER**
 - **Pedestal/edge parameters** critical for performance, $Q \Rightarrow$ understand edge T&T
 - **Power handling**: PFC damage by impact from blobs, ELMs, short-circuit divertor?
 - **Wall content** (tritium inventory)
 - **SOL environment** for RF antennas
- Science: edge and blobs physics
 - **Convective** (vs. diffusive) transport
 - **Strong nonlinearity** (~1 fluctuations, no space scale separation)
 - Emergence of **coherent** structures, **intermittency** from turbulence
- Competition: parallel transport (well-known) vs. \perp convective blob transport •
 - Need radial blob velocity v_x Need blob parameters (n, T) this poster

 - Need rate of blob generation (for $\langle \Gamma \rangle$)

Preview

Lodestar :

- Use gas-puff-imaging (GPI) diagnostic to extract blob parameters:
 - birth zone
 - scale size
 - radial velocity v_x
 - density and temperature (atomic physics model using He 5876 emission)
- Birth zone and blob parameters are related to the local maximum of the edge $\nabla ln \langle p \rangle \Rightarrow$ blob generation by underlying edge instability.
- Categorize NSTX blobs by theory regime
- Observed v_x bounded by theoretically predicted min and max

Outline

- Theory background
- Data analysis
- Future work; Conclusions

Blob filaments break off from edge plasma, charge polarize and convect outwards

Lodestar/Myra/NSTX/2005

Currents drain charges

Current path determines blob regime

Electrostatic limit: characteristic regimes ⇒ blob velocities, & bounds

Important parameters affecting blob speed

Lodestar =

🕦 NSTX ——

- scale size a_b
- T_e
- collisionality $v_{ei}(n_e, T_e)$
- field line geometry \Rightarrow position wrt. separatrix
 - L_{\parallel} (weighted connection length) or $q_{eff} = L_{\parallel}/R$
 - X-pt shear $\Rightarrow \varepsilon_x \sim 1/(X-pt "fanning")$
- amplitude of blob above background plasma, $\delta n/n_{bkgd}$

Background – GPI experiment

Lodestar

- Gas Puff Imaging (GPI)
 - Zweben 2004; Maqueda 2003; Terry 2003
 - 2D movies of blob motion
- Test theory of blob v_x
- Difficult to do with probe data alone
 - 1D time-slice through blob
 - Unknown impact parameter (no y info)
- NSTX GPI diagnostic well matched to blob dynamics
 - Spatially and temporally
- GPI measures light intensity, not n_e, T_e
 - Use atomic/radiation physics models

sample GPI frame

shot 112825 L mode 4.5 kG, 800 kA 0.8 MW NBI He puff (HeI filter)

GPI atomic physics, and modeling

Lodestar

• HeI 5876 line intensity is $I = n_0 F(n_e, T_e)$ $n_0 =$ neutral He density

 $F(n_e, T_e) = atomic physics$

- 2 basic ideas
 - Nonlinear interchange modes **passively** convect \mathbf{n}_{e} , \mathbf{T}_{e} together $\Rightarrow \mathbf{T}_{e} = \mathbf{T}_{e}(\mathbf{n}_{e})$ from equilibrium
 - n₀ is not measured so: "calibrate" I to median ("equilibrium") n_e, T_e using Thompson Scattering, probe data [Boedo] and atomic physics modeling [Stotler]
- Apply inverse mapping of $I \rightarrow n_e$, T_e derived from equilibrium profiles to turbulent (bloby) camera frames *near blob birth zone*
 - n₀ unaffected by blobs (assume)

Assume blob convects birth n_e , T_e radially outward

Blob birth zone confirms edge instability drive

Observed radial velocity $\boldsymbol{v}_{\boldsymbol{X}}$ of blob tracks show large scatter

Lodestar

- Colors identify individual blob tracks
- Observed velocities seem "random"
- What order, if any, is present in this dataset?
- Needs a theoretical framework

Observed blob velocity is bounded by theoretical minimum

Lodestar

Sheath-connected blobs have minimum v_x of all the regimes

 $v_x \sim 2.9 \times 10^{10} \frac{qT_e^{3/2}}{a_h^2 B^2} f$ $f \sim \delta p/p \sim blob amp above background$

For spatial min set $q = L_{\parallel}/R = 1 \Rightarrow v_{\min}$

Radial dependence of q_{eff}

- Trend consistent with q profile expected from geometry
 - $q = L_{\parallel}/R \text{ where } L_{\parallel} =$ weighted connection length
- Significant variations of blob velocity remain and are not explained by present model
 - Analysis errors?
 - Parallel blob structure?
 - Blob spin?

Observed blob velocity is bounded by theoretical maximum

- Blob scaling in the resistive ballooning regime gives maximum v_x
- Expect and confirm that observed v_x<< v_{max}
- Simple theoretical estimates bound the observed blob velocity $v_{min} < v < v_{max}$

Summary

Lodestar =

- Edge turbulence produces coherent propagating structures blobs
- Blobs are born with a density and temperature characteristic of where the underlying linear instability peaks
- Dynamics of blobs is consistent with simple theoretical models
 - Radial blob velocity arises from blob curvature-induced charge polarization and E×B convection
 - Identified the dependence on key blob parameters
 - Theoretical estimates bound the observed blob velocity
- Blob velocity is also influenced by effects not in the model used here:
 - Parallel blob structure?
 - Internal net vorticity (blob spin)?

Challenge questions

Lodestar :

- Can we understand the dynamics of an individual blob with known properties?
 - Given n_e , T_e , a_b compare observed v_x and evolution with theory and simulation
- What properties are blobs created with and why?
 - Rate & statistics of blob generation, scale size a_b , n_e , T_e
 - Linear γ , k $\rightarrow a_b$, parallel mode/blob structure vs. circuit path
 - v_v shear, nonlinear coupling effects on blob generation
 - Electromagnetic blobs and ELMs
 - Will try numerical simulation with 2D turbulence code
 (D. Russell's SOLT code, e.g. Poster CP1.00045)

future work

well in hand