Abstract

The resistive wall mode (RWM) can be stabilized by maintaining the plasma toroidal rotation frequency (ω_{ϕ}) above a critical rotation frequency (Ω_{crit}). Recent experiments on NSTX seek to determine Ω_{crit} and rotation profile effects through actively braking plasma rotation by the application of external magnetic fields. Results from these experiments indicate that maintaining ω_{ϕ} at the q = 2 surface above $\omega_{A}/4q^{2}$ is a necessary condition for RWM stability where ω_A is the local Alfven frequency. This result is in agreement with a theoretical model derived from a drift-kinetic energy principle. Similarity experiments with DIII-D are being performed to examine the aspect ratio dependence of the Ω_{crit} scaling. When $\omega_{_{\!\varphi}}$ at the q = 2 surface drops below Ω_{crit} , the growth of internal kink/ballooning modes can prevent the RWM from terminating the discharge. A small beta collapse which drops Ω_{crit} , accompanies this mode growth allowing a recovery of RWM rotational stabilization while maintaining $\beta_N > \beta_N^{\text{no-wall}}$.

*Work supported by U.S. DOE contracts DE-FG02-99ER54524 and DE-AC02-76CH03073

<u>RWM Can Limit Sustainable Pressure in</u> <u>Current and Future Fusion Devices</u>

- Current fusion experiments which operate with $\beta_N > \beta_N^{no-wall}$ experience RWMs
- RWM can be stabilized by plasma rotation
 - □ Feedback control has also been demonstrated
- Future devices will have low rotation so may be more susceptible to RWMs
 - Understanding of the critical rotation required for RWM stability is important to design these devices correctly
- RWM can be stabilized by combination of toroidal rotation and dissipation
 - several dissipation mechanisms have been proposed
 - sound wave
 - ion Landau damping
 - Alfven continuum
 - rotation can affect dissipation strength
 - critical rotation frequency (Ω_{crit}) is minimum rotation required for stability

Internal Sensor Array Used for RWM Detection

- Internal toroidal arrays of B_p and B_r sensors installed
 - 5 kHz digitization rate
 - □ instrumented to detect n = 1 3
- Measured coil currents used for background subtraction
 - ~2 Gauss noise level achieved
 - allows real time mode detection

B

SVD mode detection is robust

Passive Stabilizing Plate

ACS - APS DPP '05

<u>New Coils and Power Supplies Provide</u> <u>Greater Flexibility to Study Ω_{crit} </u>

VALEN Model of NSTX (J. Bialek) 6 ex-vessel midplane control coils

- RWM/EF coil and SPA capabilities:
 - 3 opposing coil pairs in anti-series (n=1,3)
 - n=2 interconnection also possible
 - 3 independent SPA circuits 3.3 kA, 7.5 kHz
 - Can produce 10-15 G n=1 resonant B₁ at q=2
- Uses for NSTX:

 - investigate RFA
 - investigate error field correction
 - future active RWM stabilization

External Field Application Allows Rotation Control

• Control over rotation allows more careful examination of the rotation profile effects on RWM stability

Resonant Field Amplification Observed With Application of External n = 1

- Resonant field amplification (RFA) when $\beta_N > \beta_{N \text{ no-wall}}$
 - amplification of external perturbations by *stable* RWM
 - predicted by theory*
 - Ideal MHD stability δW from DCON (A.H. Glasser)
- RFA observed until rotation braking destabilizes mode
 - unstable growth after significant rotation damping
 - edge rotation remains stabilizing
 - Iow rotation at multiple low-order rational q surfaces

*Boozer, A.H., Phys. Rev. Lett., 86 5059 (2001)

RFA Decays When External Field Turned Off Before RWM Destabilization

- rotation remains high at some low-order rational q surfaces
 - □ near zero rotation outside q = 3 ($\psi_N \sim 0.65$)
- field amplitude below threshold
 - ~20 Gauss causes unstable mode growth and disruption
- 9.1 ms decay time measured

$\frac{\text{High Toroidal Rotation Across Entire Profile}}{\text{Allows Sustained High } \beta_{N}}$

2004 Data Supports 1/q² Scaling of Critical Rotation Frequency

- Scaling from two stability classes:
- Bondeson-Chu drift-kinetic model* agrees with observed scaling
 - trapped particle effects weaken stabilizing ion Landau damping
 - toroidal inertia enhancement becomes more important
 - Alfven continuum damping gives:

$$\Omega_{crit} \equiv \frac{\omega_t}{\omega_A} = \frac{1}{4q^2}$$

ACS - APS DPP '05

High Core Rotation Insufficient to Stabilize RWM

- Low edge rotation when no-wall limit exceeded
- RWM growth causes further rotation damping
 - ~15 Gauss threshold after which collapse is inevitable
- Important question: What is the critical rotation profile?

Rotation on Higher Order Rational Surfaces Not Required for RWM Stabilization

- Plasma remains RWM stable with near zero rotation outside q = 3
 - Stable with near zero rotation outside $\psi_N = 0.62$
 - **growth coincides with low rotation inside of q = 2**

Similar Discharges Survive Longer With Lower Rotation @ q = 2 Surface

- No unstable growth until ~ 20 ms after rotation drops at q = 2
- Higher δW & lower applied field than 117291

 \Box factors beyond rotation at q = 2 need consideration

Significant Variation Observed in Marginal Rotation Profiles

• Each case is last profile before unstable RWM growth observed

- Shot with no applied field has entire profile near or above 1/4q²
- n=3 applied field used to alter rotation profile
 - rotation in edge of plasma suppressed
- q = 2 region appears significant but not definitive

– 🕕 NSTX

Marginal Stability Shows Weak Dependence on Plasma Parameters

- Rotation shows no scaling with β
 - no-wall limit varies significantly shot-to-shot
 - \square need to check against C_{β}

$$C_{\beta} = \frac{\beta - \beta_{no \; wall}}{\beta_{ideal \; wall} - \beta_{no \; wall}}$$

- Weak variation with plasma shape
 - need to normalize out influences of shape on no-wall limit

$\frac{\text{DIII-D Shape Reproduced to Examine A}}{\text{Scaling of }\Omega_{\text{crit}}}$

- Including neoclassical viscous dissipation in RWM dispersion relation* leads to inverse aspect ratio dependence of $\Omega_{\rm crit}$
- Previous comparisons used different techniques to determine $\Omega_{\rm crit}$
 - Active braking on NSTX allows more straightforward comparison
- DIII-D shape matched in NSTX with $\beta_N > \beta_N^{no-wall}$

 \Box q & β scans performed

*Shaing, K.C., Phys. Plasma **11** 5525 (2004)

More Rotation Required for RWM Stability in NSTX

- Comparison of marginal profiles in similar shaped discharges
- Low rotation edge doesn't affect stability
- NSTX has higher rotation throughout region which determines stability

Similarity Experiment is Examining RWM Stability Variation with A

- Profile effects being studied
 - NSTX has higher rotation at q = 2 and in the core
 - □ very low rotation at $q = 3 \Rightarrow \Omega_{crit}$ cannot depend on q = 3
- Large data spread (especially NSTX)
 - subjectivity in determining start of unstable growth
 - 10 ms averaging time for rotation measurement

Sound Speed Normalization Removes Aspect Ratio Dependence

- Coupling to sound waves is one possible dissipation mechanism
 - depends on sound speed

$$V_s = \sqrt{\frac{kT_e + \gamma kT_i}{m_i}}$$

- Critical rotation variation at q = 2 reduced with V_s normalization
 - consistent with significant dissipation due to sound waves

Numerical calculations of relative magnitudes of sound and Alfven wave dissipation needed

- RWM leads to disruption
- Type I ELM causes β drop, but plasma recovers
- Minor collapse has smaller β drop than RWM, but no recovery
 must examine in more detail to classify this collapse

RWM Characteristics Observed During Smaller <u>β collapses</u> 02 Typical RWM causes disruption 116927 **─** 0.455 s - 0.465 s Some smaller collapses could be due to nondisruptive RWM 0.475 s - 0.485 s V_{ϕ} slow mode growth observed in internal sensors 0.495 s 0.1 growth rate and onset consistent with RWM V_A $1/(4q^2)$ \sim 10 ms growth time low rotation well inside q = 2Growth of tearing mode removes unstable drive 0.0 2.0 3.0 4.0 Shot 116927 ω**B**(ω) spectrum for toroidal mode number: 100 q δW (arb.) 80 Fregency (kHz) -40 60 no-wall **DCON** ideal-wall -80 40 400 B_p (Gauss) SPA 10 20 200 0.40 0 0.52 0.48 0.440.3 0.4 0.5 0.6 time (s) time (s)

- SXR data shows initial mode growth at edge then slow penetration
 - $\hfill \hfill \hfill$
- ELM much more rapid than both 116927 & 117291

- 116927 becomes Mercier unstable in core
- Large internal perturbation provides ideal trigger for tearing mode
 - \square reduction in β removes unstable drive for RWM

Summary

- Active coils allow detailed study of RWM physics
 - rotation control
 - RFA studies MHD spectroscopy
- Examining rotation profile effects indicates rotation at outer q surfaces not required for RWM stability
 - RWM stable discharges produced with low or negative rotation outside q = 3
 - \Box core rotation (inside q = 1.5) alone cannot stabilize RWM
- DIII-D similarity study under way to determine aspect ratio effects on RWM stability
 - Iow-A requires higher rotation
 - □ V_s normalization removes aspect ratio dependence
- Growth of internal modes can halt RWM collapse
 - internal kink/ballooning modes can trigger tearing modes, removing unstable drive for RWM

Reprints

ACS - APS DPP '05