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NSTX MHD Considerations

• Instabilities lead to the growth of MHD ‘modes’ – perturbations
in the equilibrium magnetic configuration.

• If the plasma rotates, we can measure the perturbations
with arrays of Mirnov coils positioned around the device.

• We have developed algorithms superior to FFT that calculate
the temporal and spatial phases of the signals.

• The spatial phase can be characterized by the Fourier
poloidal and toroidal mode numbers, m and n.

• The non-circular cross section of NSTX presents difficulties
for determiningm – thus we revert to numerical techniques.



Layout of Mirnov Coil Arrays

Toroidal ArrayINDEX ANGLE
1 300.0
2 310.0
3 330.0
4 0.0
5 10.0
6 30.0
7 60.6
8 64.1
9 67.6

10 71.0
11 74.5
12 88.4
13 91.9
14 180.0
15 190.0
16 205.0

Diagram and Table created by J. Menard
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Filtered Signal is Sinusoidal
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Visualization & Models of Full Arrays
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Filtered Signal

• What are m and θ*?

• What are γ and ω?

The toroidal signals can be modeled as The poloidal signals can be modeled as

• Here, n=1, by inspection.

• Need quantification of the error.



Determining ω and n 
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Determining Oscillation Parameters

The model equation of the perturbations is

B̃s(t, φs, θs) = B0e
γgt sin(ω(t)t− ψs). (1)

The temporal phase , ωt, can be determined by fitting a
polynomial function to the times of zero B̃, which will yield
a possibly time dependent ω(t). If, for a single sensor,
the total errors between the zero B̃’s and the temporal fit
are greater than 3 times the average (over all sensors)
total error then the sensor is subsequently ignored. The
ignored sensors (only 2-3, if any) are usually in the divertor
regions, where there is a smaller B̃ to detect. This method
of determining the temporal phase is superior to using
the phase from an FFT, because the FFT is constrained



Determining Oscillation Parameters (2)

to look at fixed ω’s: the FFT phases will be polluted if the
frequency of the perturbation changes in time.

The spatial phase , ψs, of a sensor, s, is the average difference
between the temporal phase of s and the average temporal
phase of all of the sensors. Since the temporal phases
mentioned before were more accurate than those obtained
from an FFT the spatial phases will be more accurate as
well.

The growth rate , γg, is obtained by taking an appropriate
linear fit of the form

ln

(
Bs

B0 sin(ωt)

)
= γgt, where sin(ωt) > 0.7.



Spatial Phase: Finding m or n

Express the spatial part of Eq. (1) as µs = (B0)se
iψs. As

mentioned, theory predicts that the measurements (when
a single MHD mode can be isolated) should behave like
ηs = bei[nφs or m(θ∗)s], where b is complex-valued and is found
below, m[n] is the poloidal [toroidal] mode number, φs is
the toroidal angle of s, and (θ∗)s is the poloidal angle of s
measured from the horizontal ray extending from the center
of the mode in the outboard direction including toroidicity
effects. For NSTX, because all of the poloidal sensors are
at the same toroidal angle, and vice versa, m and n can be
calculated independently.



Spatial Phase: Finding m or n (2)

Minimizing the error between µs and ηs yields

bn,m =
1

Nsens

∑
s

ηse
i(n,m)φs

with a reduced error of

ε̂n,m =

(
1−

Nsens|bn,m|2∑
s |ηs|2

)1/2

, (2)

where Nsens is the number of sensors being considered.
The subscript n,m denotes the mode number, so the lowest
error over the range of mode numbers tried corresponds to
the best fit mode number.



Off-Center Geometry

Horizontal Displacement, d Vertical Displacement, c



Toroidicity Effects on θ∗

The first toroidal effect by θ∗s was derived by Merezhkin1 as

θ∗(θM ) = θM − λ sin(θM ), (3)

where λ = (βp + li/2 + 1) aR, βp is the poloidal β, li is the
internal inductance, a/R is the inverse aspect ratio, and
θM is the angle of a sensor measured from the horizontal
relative to the center of the mode. Denote θ as the angle
of a sensor measured from the horizontal, relative to the
center of the vacuum vessel. If the center of the mode is
displaced a horizontal distance, d, and a vertical distance,
c, from the vacuum vessel center (which is a distance b from
a sensor), then an expansion for (3), where y = d/b, z ≈ c/b

1Merezhkin, V.G., Sov. J. Plasma Phys. 4 (1978) 152.



Toroidicity Effects on θ∗ (2)

yields

θ∗ = θ +
∑
L

αL sin(Lθ) +
∑
K

βK cos(Kθ) +O(y3, z3), (4)

where
α0 = 0 β0 =

λz

2

α1 =
λ

8
(y2 + 3z2)− λ + y β1 = −λz

2

4
− z

α2 =
y2 − z2 − λy

2
β2 =

λz

2

α3 =
3λ

8
(z2 − y2) β3 =

λz2

4
.



Coefficients α, β

Although NSTX has an elongation of κ ≈ 2 and the previous
calculations were for a circular plasma, we have assumed
that any noncircular effects could be approximately incorporated
into θ∗ by a combination of sines and cosines as in Eq.
(4). The coefficients, αL and βK are determined by an
automated computational search algorithm (see following
slides) to find the values with the lowest error, as computed
in Eq. (2). This lowest error also corresponds to an appropriate
mode number, m.



Algorithm to Find θ∗

θ∗ = θ +

Lmax∑
L=1

αL
L

sin(Lθ) +

Kmax∑
K=1

βK
K

cos(Kθ)

1. Initialize the ranges of αL and βK as αrL and βrK around
the best values, αLa, βLa, which are initially 0. Set Lind = 1

2. Vary α1 and α2 simultaneously over their respective ranges
to find the best values so far for α1a and α2a.

3. If Lind = Lmax, then goto 7. (Lmax ≤ 5)

4. Decrease αrL, only for L = 1 . . . Lind.

5. Set Lind = Lind + 1, L = Lind.

6. Vary αL over αrL to get αLa. If L−1 = 2, goto 2, otherwise
repeat 6 with L = L− 1.



Algorithm to Find θ∗ (2)

7. If Kind = Kmax then goto 11.

8. If Kind > 0 then decrease βrK , only for K = 1 . . . Kind

9. Set Kind = Kind + 1, K = Kind

10. Vary βK over βrK to get βKa. If K=1, goto 6, otherwise
repeat 10 with K = K − 1.

11. If ε̂m > ε̂max(≈ 0.4) for αa and βa, then get rid of the
phase of the sensor with the worst error and recalculate
ε̂m. Repeat this step up to Nditch(≤ 4) times.



Constraints on αL, βK, & the Algorithm

• α1,2 are looked at first, because, in NSTX,

� there is very little vertical displacement
� the center of the vacuum vessel cross section is ill-

defined, necessitating a possible horizontal displacement.

• L = 1
2 is allowed

• The derivative
dθ∗

dθ
> 0 is demanded.

• Based on experience, supported by the equations following
Eq. (4), α1,2 < 0 always (since y < λ always).

• Ditching a given sensor will not drastically change αa, βa,
or the best m, but will improve the error.

• The inboard midplane sensor can not be ditched.



Search Algorithm: α,β & Errors

Shot 116087: 360ms, 3.1 kHz, m=-4, error = 0.566.
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Rotation and Frequency

The plasma rotates in the toroidal direction with a velocity,
vpl. A given perturbation of n = 1 will then appear to have a

frequency of ωapp =
2πRpl
vpl

, where Rpl is the major radius of

the plasma, or for arbitrary n, ωapp = n
2πRpl
vpl

.

Utilizing Charge Exchange Recombination Spectroscopy (CHERS),
along with EFIT, one can measure the velocity profile vpl(R)

to compare the calculated mode frequency to the rotation
frequency of the plasma at the flux surface location corresponding
to the computed helicity, mn .



Shot Parameters at the Times of Interest

114148 114184 116087
Ip (MA)
BT (T)
βT (%)
κ
δ(upper)
qmin

1.2 0.5 0.8
-0.31 -0.32 -0.44

36 7 9
2.2 1.9 1.9

0.49 0.44 0.29
1.35 0.9 1.3



Sample m=4/n=1 Frequency vs CHERS

This is ω/2π from 
the temporal phase. 

Normalized Flux

EFIT indicates 
where the flux 
surface of 
q=m/n resides.

This is the rotation 
frequency of the 
m/n flux surface.

This is the difference 
between the rotation 
frequency and ω/2π .
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q profile from EFIT
Rotation profile from CHERS



Common m=4/n=1 mode for high βT

n=1, Error=0.196

Toroidal Angle (deg)

Poloidal Angle (deg)

0 180 360

0 180 360

m=-4, Error=0.369

Shot 114148



Common m=4/n=1 mode for high βT   (2)

Normalized Flux
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There is very good agreement 
here between the calculated 
frequency and the rotational 
frequency of the m/n surface.



Possible core m=1/n=1 mode

n=1, Error=0.196

Toroidal Angle (deg)
0 180 360

m=-1, Error=0.546

Poloidal Angle (deg)
0 180 360

Shot 114184: No rotation data.
Need to compare to other diagnostics.



Another m=4/n=1 mode (Low β)

m=-4, Error=0.596

n=1, Error=0.152
Poloidal Angle (deg)

0 180 360

Toroidal Angle (deg)
0 180 360

Shot 116087



Another m=4/n=1 mode (Low β)   (2)

There is not as good of an 
agreement between 
frequencies, which is also 
reflected in the higher value of 
the error of m, 0.596.  

This might have something to 
do with the mode already 
being saturated.  
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Thus, there are limitations as 
to how well this algorithm will 
work.    

Shot 116087



Conclusions & Future Work

• Rotation of NSTX plasmas allows the measurement of
magnetic perturbations by Mirnov coils.

• We developed algorithms that are applicable to the shaped,
high beta plasmas in NSTX to determine the modes’:

- Growth Rate
- Frequency (possibly time dependent)
- Toroidal Mode Number, and
- Dominant Poloidal Mode Number

• Our calculations of these characteristics agrees well with
CHERS and EFIT.

• Further work is needed to resolve m of core modes.
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