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Electron transport in NSTX presents interesting puzzles. In high density H-
modes χe>>χi≈χi

NC although the beams preferentially heat the electrons. In 
contrast, χe≈χi>χi

NC in low ne L-modes. In an attempt to understand these 
effects, perturbative transport studies are planned in parallel with the power 
balance measurements. Since ECE is not applicable in NSTX, a ‘multi-color’
soft X-ray technique is being developed for the diagnostic of fast Te
perturbations (see also posters by L. Delgado and K. Tritz). The plasma is 
simultaneously viewed by soft X-ray arrays in different energy bands and 
modeling of the emission profiles used to propagate on fast time scale (<0.1 
ms) the Te profile measured by laser scattering. The technique is capable of 
good accuracy over tens of ms. Both ELMS and pellets are investigated as 
perturbation sources. After Type-I ELMs, the perturbed Te profile shows fast 
‘cold pulse’ propagation in the outer plasma, with a marked slow down 
towards the axis, in contrast with the radial dependence of χe

PB. The first 
results from Li pellet injection demonstrate this is a good tool for the planned 
transport studies. The preliminary analysis indicates fast cold pulse 
propagation to the plasma center in H-mode, similar to the ELM case. This 
suggests that most of the Type-I ELM effects reflect in fact electron transport. 
In contrast, in low ne/shear reversed L-modes, strong damping of the cold 
pulse and possibly polarity reversal occurs around mid-radius.
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Puzzles in NSTX electron transport  
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• Ti exceeds Te although 
electrons primarily heated
• Flat Te in H-mode   

<-> very large central χe

• Ions close to neoclassical
• Much reduced χe in 
low ne /high Te ‘L-mode 
• Perturbative studies and 
correlation with high & low-
k  fluctuations may help 
understand these puzzles
• This work: A first 
assessment of pellet and 
ELM induced Te

perturbations 
• Fast Te diagnostic based
on ‘multi-color’ USXR



Te perturbation at Type-I ELM

central SXR (E >0.4 keV)

Ip

Te0

neL

• 10-15% core δTe at Type-I ELM from Multi-point Thomson Scattering (MPTS)
• δneL most often small

#112550 (7 MW NBI, 0.8 MA, 4.5 kG)

Type-I 
ELMs

H-mode



ELM causes mostly Te perturbation

SXR

Hα

• Thomson Te profile drops after ELM 
and recovers ~ 17 ms later
• Note ∇Te  does not change at drop
• Density profile little perturbed
(Note that the density ‘ears’ have 
been dissipated by earlier ELMS)

#112581 (7 MW NBI, 1 MA, 4.5 kG)



Core Te drop not caused by internal MHD

Horizontal up
E > 0.4 keV (Be05) 

Re-entrant
E > 1.4 keV (Be 100)

Top
E > 0.4 keV (Be05) 

NSTX SXR diode system

• Selectable cutoff energies: 
- core/edge MHD imaging
- ‘two-color’ Te profiles
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• No core coherent modes or reconnections 
prior to drop
(See also posters by K. Tritz and P. Riddha)

Core SXR perturbation, #112581 
(Horizontal down, E > 1.4 keV)
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Horizontal down
E > 1.4 keV (Be100)
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Global SXR drop triggered by the ELM  
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Horizontal down, E > 1.4 keV 

Horizontal up, E > 0.4 keV, #112550 
(0-10 kHz  band-pass filter)
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• ELM manifest as peripheral 
‘reconnection-like’ event  occurring 
on  the MHD time scale

• No indication the mode extends 
more than ρ > 0.9 into the plasma

• Following the peripheral event, 
the E>1.4 keV SXR emission 
drops 50% on ~ 1.5 ms time scale

• ‘Erosion’ of the SXR profiles prior 
to the ELM (see poster by K. Tritz)

~



Small change in plasma equilibrium during ELM
Equilibrium changes computed by fast (0.1 ms) EFIT during large Type-I ELM

(S. Sabbagh, U. Columbia)

• In spite 12.5% δWtot,  only 0.4% δRout, 0.9% δR0 and 0.5% δκ
• SXR drop must reflect rapid electron heat loss following perturbation 
of peripheral Te profile  

(113415
7 MW NBI, 
0.8 MA, 4.5 kG)



MPTS Te profile
at t1=0.427s

t (ms)
Chord #

E > 1.4 keV /  E > 0.4 keV 
(Horiz. Up / Re-entrant)

• MPTS profile at t1 propagated in time using  SXR intensity ratio:  
- SXR profiles fitted for nZ profile  (CE radiative coefficients + EFIT mapping)
- profile ratios then fitted with Te(r,t1)MPTS+δTe(r,t)

• ne, nz perturbation neglected in the first approximation

‘Two-color’ Te profile after ELM agrees with MPTS
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SXR and MPTS 
Te profile at t2=0.443s

SXR
MPTS

MPTS



fO=0.05*fC
fB=0.25*fC

chord#

‘Two-color’ ratio insensitive to ne, nz perturbations

• Intensity ratio reflects mainly Te(r) changes (at constant C:O:B fractions)
• In spite line integration, ratio insensitive to large changes in  ne(r), nZ(r)

Te perturbation ne perturbation nC perturbation



R/LTe from  t=480 to t=484 ms
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• Edge perturbation reaches central plasma in a few ms
• Almost no delay in perturbation peak in the outer plasma
• Te profile evolves with little change in gradient (‘stiffness’)

MPTS t1 MPTS t2

ELM

‘Two-color’ modeling shows fast Te drop at ELM

#112550



ρ

Time-to-peak (ms) Te at t1 (keV)
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Two regions of cold pulse propagation  
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• Very fast propagation in the region of strong 
Te gradient (ρ > 0.5)

• Markedly slower propagation inside

• χe
t peak = 1/8 ∆r2/∆tpeak (sawtooth model)
-> hundreds m2/s outside ρ > 0.5 
-> tens of m2/s inside 

• Opposite trend to χe
PBχe

t peak

χe
PB



Local χe estimate using LHD cold pulse model
Inagaki et al, PPCF 04, neglects ion damping (e-i coupling)
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• Very rapid perturbed transport
in the Te gradient region, rapidly 

decreasing  inside
• Electron transport strongly driven 
above critical in the  ∇Te region, but 
nearer to threshold where Te flattens ? 

(∼ χe
inc)



What about the ions ?

Wel TRANSP

Wtot EFIT

Wel SXR

δWtot ~ 20 kJ

δWel ~ 15 kJ

W (kJ)

t (s)

• At most ~ 5 kJ thermal ion heat loss -> δTi/Ti mostly from i-e coupling  
-> perturbed ion transport also much slower than electron one ?

• Delayed neutron drop reflects changed fast ion population due to
changed Te profile

NEUTRONS

SXR

10%

Wfast TRANSP



First results from Li pellet injection: H-mode

• 0.43 mg Li pellet injected at ≈ 150 m/s velocity
• 20%  δTe0, with only small δneL
• Rapid SXR drop resembling that observed at Type-I ELM

#117793 (7 MW NBI, 0.8 MA, 4.5 kG)

Ip
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neL

H-mode

Li pellet

SXR 
(E >0.6 keV)
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• Li III 135 Å Lyα emission monitored by JHU multilayer Telescope
• Successive MPTS profiles show global Te drop resembling that at ELM
• Only small ne increase,  localized inside pedestal

MPTS profiles before and after injection

Li III Lyα JHU Telescope

TS1

TS2



• Pellet perturbed Te profile at TS2 has same normalized gradient as at TS1
(‘stiff’ behavior as in the case of ELM perturbation) 
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135 Å Multilayer Mirror Telescope on NSTX

• f = 0.5 m turbulence imaging instrument 
under development
• Served as Li III Lyα monitor  using a 1 cm2

AXUV diode for detection

4” Mo/Si 
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Fast camera shows pellet ablating in the edge 

• Low energy (C VI Lya) SXR imaging also indicates pellet stops in the 
pedestal

SOL filamentation ?



Rapid SXR drop induced by the pellet  

Re-entrant, E > 1.4 keV 

Horizontal up, E > 0.6 keV
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• Pedestal emission (E > 0.6 keV) 

drops then increases (δnLi)

• Rapid drop in E > 1.4 keV core 
emission  

• Perturbation reached the core 
≈ 1 ms after the pellet ‘touches’

the pedestal

• The pellet might have triggered 
an ELM ?
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• Slightly different picture seen in 
‘small Type-I ELM’ discharge
(see poster by K. Tritz)

• Pedestal emission only increases 
(likely δnLi)

• Clearly no ELM triggered in this 
case

• Still rapid drop in core emission 220
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Perturbation is rapid also when no ELM suspected   

Li III Telescope



Preliminary analysis  of perturbed Te profiles   

• SXR analysis less accurate due to high-Z contamination 
• Perturbation picture nevertheless similar to that from Type-I ELM

6 MW H-mode 117898Te (keV)
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R/LTe from  t=440 to t=444 ms
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pellet at
edge
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• C VI Lya image suggests deeper
pellet penetration than in H-mode

• E>1.4 keV central emission
lasts unperturbed several ms after 
pellet penetration

• Plasma collapse due rather to 
MHD than core cooling
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Horizontal up, E > 0.6 keV

Strikingly different picture in low ne ‘L-mode’
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pellet in

2 MW L-mode 117784Te (keV)
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R/LTe from  t=297 to t=301 ms
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• Te perturbation appears to change polarity inside r/a≈0.4 (q≈1)
(reproducibility  not yet verified)

• Large change in normalized Te gradient (‘non-stiff’ profile)
• ‘Cold pulse’ polarity reversal often seen in tokamaks  

Preliminary analysis shows large change in ∇Te
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• SXR data also indicates shear reversal 
(two m=1/n=1 modes)
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Conclusions  
• The ‘multi-color’ SXR technique can provide fast Te measurements in the ST

• Low velocity Li pellets are good tools for perturbative transport in NSTX 

• The comparison between the ELM and pellet perturbation strongly suggests  
the Te crash seen at ELMs is an electron transport rather than a MHD effect;
is the Type-I ELM more of an electron transport phenomenon than believed ?

• Very fast cold pulse propagation in the high ne NSTX H-mode; 
are electromagnetic instabilities (e.g., micro-tearing) at play ?

• The large difference between core electron transport in the high ne H-mode 
and the low ne L-mode appears to carry over also in the perturbed transport

• Correlations between perturbative electron transport and high-k fluctuations  
possible at NSTX might provide interesting clues  
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Raw SXR data during Type-I ELM
Hor. Up E > 0.6 keV Hor. Down E > 1.4 keV

edge

axis

axis

edge

• ELM MHD signature  limited to edge ->  SXR crash is transport effect


