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Abstract
•Ohmic H-modes were only recently obtained on NSTX, several years after
obtaining the first NBI heated H-modes. Ohmic H-modes are obtained
without the added input and complication of fast particles and momentum
that accompany NBI. This may allow a better chance of understanding the
fundamental physics of the L-H transition and H-mode dynamics as well as
turbulence simultaneously measured in the core and edge.  On NSTX, two
types of Ohmic H-modes have been observed, ELM free during lower single
null (LSN) and ELMy, during double null (DN) divertor configurations.  It was
necessary for the plasma to be diverted for the L-H transition to occur.  In
several discharges, the edge electric field started to become more negative
up to 20 ms before the plasma became diverted, when the L-H transition
occurred.  Bursts of fluctuations in edge electron density (ne) 10’s of ms
before the transition have also been observed.  NBI heated H-modes are
dominated by rapid peaking of the edge “ears” on the ne profile, which
makes reflectometry of the core impossible. In contrast, for ELM free ohmic
H-modes, the ne profile is initially peaked in the core. This allows access
over tens of milliseconds for correlation relflectometry measurements in the
core, which shows a decrease of more than two times in the correlation
length across the L-H transition. At the same time, gas puff imaging (GPI)
shows significant edge turbulence before the L-H transition as indicated by
the “blob” activity, while after the transition the edge becomes very
quiescent, similar to what is found in NBI heated H-modes.
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Outline

• Ohmic H-mode plasma characteristics
– Plasma must be diverted to obtain L-H transition
–ELM-free in lower single null (LSN) divertor

• Core turbulence characteristics
– Core correlation length decrease  > 2x thru L-H

transition
• Edge turbulence characteristics
• Summary
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Introduction
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Motivation

• Study H-mode Physics without Complications of
External Momentum and Hot Fueling

• Study Core and Edge Turbulence Simultaneously
—Peaked ne profiles allow reflectometry across

whole profile.

Also see Posters:
R. Maqueda - RP1.014 - Edge GPI

S. Kubota - RP1.029 - Core Reflectometry
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Comparison of Density Profiles of NBI and
OH H-modes

• Ohmic H-modes have low centrally peaked densities
– Explore edge and core turbulence simultaneously
– Target plasma for early NBI and combined ITB and ETB

NBI OHELM-
Free

OHELMy

B. LeBlanc
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Characteristics of Ohmic
H-modes
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Lowest Pth Required for OH Hmodes
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Plasma ne, WTOT and Other Parameters
Increase at the OHmic L-H-mode Transition

The Stored energy change
Due to transition to H-mode
is maintained through the
H-phase
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No Interaction with Centerstack when
LSN Ohmic H-mode
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ELM-Free OHH-mode Obtained with LSN

B. LeBlanc
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Model for the L-H
Transition
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Model: E x B Flow Shear Breaks Turbulent Eddies
to Transition to a Quiescent State

• Sheared ExB flow is expected to suppress turbulence
leading to enhanced core confinement

• The ExB flow is determined from the zeroth order force
balance equation for any species i:

• Er can be solved for by using measured profiles of:

ni, Ti, VФ: using charge exchange recombination
spectroscopy (CHERS)

Bθ from MSE, combined with TRANSP simulations

Ze n dr dri i� �E T dn dT V B V Br
i i i

= +�� ��1
θ φ φ θ− +[ ]
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Ion Temp. (Ti) and Toroidal Velocity
(Vt) Increase during OHH-mode
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C VI Emissivity and Toroidal Velocity Increase in
Plasma Edge during Ohmic H-mode on NSTX

R. Bell

Position of 
measurement

H-mode

C VI Edge Toroidal Velocity,
Vt, Increases During H-mode
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Ohmic H-modes sometimes show Er and Vp change
~ 20 ms prior to L-H transition

Er and Vp begin to
change 10 to 20 ms
before L-H transition
(here at t ~ 0.220
sec).
_____________
Er and Vp are
obtained from the
Edge Rotation
Diagnostic (ERD).

H-mode
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 These changes are not seen on all shots so they are not causal

Er and Vp begin to increase
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Core Turbulence Studies
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The Correlation Length in the Core Decreases
by a Factor > 2 Across the L-H Transition

Figure: Shows the core
correlation length drops by
a factor > 2 across the
L-H transition.
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The Density Change in the Core is Small Across
the L-H Transition

Figure: Shows density
change at the edge is not
large enough to account for
the change in Lcr across L-H.
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Correlation Length Decreases with L-H
Transition

Time series of cross-correlation values near
L-H transition.

･ Typical  Lcr drops from ~10-20 cm to ~4-8
cm at L-H transition.

･ Eventual rise in edge density cuts off
reflectometer signal.

･ For core 42 GHz channel, statistical prop-
erties of signal (amplitude histogram,
complex spectrum) remain constant
across transition -> turbulence properties
closer to axis changing little.
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Profile Evolution During Ohmic H-mode

Reflectometer Raw Signals and Dalpha

S. Kubota
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Edge Turbulence
Studies
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•    Looks at Dα light from gas puff  I ∝ none f(ne,Te)
•    View ≈ along B field line to see 2-D structure ⊥ B
•    Image coupled to camera with 800 x 1000 fiber bundle 

viewing area
≈ 20x25 cm

GPI Hardware and Orientation

S. Zweben  &
R. Maqueda 
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Summary of GPI Results
• Edge turbulence observed during Ohmic H-modes in NSTX

is similar to that measured in neutral beam heated H-
modes.

• Quiescent H-mode edge is present with the turbulence
much reduced with respect to the preceding L-mode phase.

• Only small amplitude poloidal modulations of the
emission has been observed during H-modes.

• The fluctuation level decreases from a typical 10%-40%
RMS level in L-mode to an also typical 5% RMS level in a
quiescent H-mode.

• The poloidal autocorrelation lengths appear to be
somewhat smaller than those previously reported in H-
modes.
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Typical L-mode
turbulence and

blobs

Separatrix

Antenna
limiter

shadow

24 cm radial

24 cm poloidal

GPI: L-mode phase
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L-H Transition
takes place at

~192.1 ms

H-mode

L-mode

GPI: L-H transition
D α
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Turbulence & bright blobs, at ELM Burst?
D α
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Transport Simulations
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The NSTX Plasma must be Diverted for the
OHmic L-H-mode Transition to Occur
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Electron Heat Diffusivity, χe Lower
during OHH-mode
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Profiles of Ion Heat Diffusivity, χi
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Profiles of Ion Neoclassical Heat
Conductivity, χi
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Summary

• OHH-modes have centrally peaked density profiles.
–Allows core turbulence studies during early H-phase

• OHH-mode χi ~ χiNC
–Short H-mode at Ip = 600 kA, Bt = 3 kG

• Core turbulence correlation lengths decrease in
OHH-mode by > 2x.
–Perhaps due to the centrally peaked density profiles

• Edge turbulence is very quiescent during OHH-
mode.
–Occasional bursts (ELMs ?)
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END


