

Status of the TST-2 Spherical Tokamak and Future Plans

Y. Takase, A. Ejiri, S. Shiraiwa Graduate School of Frontier Sciences, University of Tokyo for TST-2 and TST-2@K Groups

47th Annual Meeting of the APS Division of Plasma Physics

Denver, Colorado 24-28 October 2005

Motivation for CS-less I_p Start-up

Compact, high β plasma with good confinement can be realized in ST \rightarrow compact burning plasma experiment and fusion reactor

Lower aspect ratio and elimination of central solenoid (CS) improves economic competitiveness

S. Nishio

TST-2 Spherical Tokamak

TST-2 –

Design parameters of TST-2: R = 0.38 m / a = 0.25 (A = 1.6) $B_t = 0.3 \text{ T} (0.3 \text{ T} \text{ achieved})$ $I_p = 0.2 \text{ MA} (0.14 \text{ MA achieved})$ $t_{pulse} = 0.05 \text{ s} (0.3 \text{ s} \text{ achieved})$

Main research topics:

- Plasma start-up optimization
- RF heating and wave physics
- MHD instability and reconnection
- Control of turbulence and transport

Reconnection Events

Detailed Time Evolution

Ion Heating Observed at Reconnection Events

TST-2 –

Conversion of magnetic energy to ion kinetic energy

CV intensity decreases while CIII, OIII intensities increase (loss of electron energy)

CV (core) , and OV, CIII, OIII (edge) ion temperatures increase at reconnection events

Relocation of TST-2 (Twice in 2 Years)

TST-2 –

TST-2 at Kyushu University (2003)

EBW Heating Experiment Δ (dW/dt) Indicates Absorption > 50%

X-ray/Visible Emission Profile Indicates Central Electron Heating

S. Shiraiwa

Absorption is Poor (< 20%) When the Density is Lower

Plasma Current Formation by ECH

- 1 kA / 1 kW achieved by ECH (2.45 GHz)
- Higher current for low gas pressure
 → low collisionality is important
- Requires vertical field with positive curvature
 → trapped particles are important

TST-2 –

Solenoidless Start-up Experiments

TST-2@K

Reconstructed Equilibrium of the RF Start-up Plasma (I)

Plasma is limited by the outboard limiter, j_{ϕ} is <u>truncated</u> at top and inboard

Flux function has free parametes β_{p0} and A.

$$j_{\phi} = r \frac{\partial p}{\partial \psi} + \frac{1}{r} \frac{\mu_0}{4\pi^2} f \frac{\partial f}{\partial \psi} \qquad \mu_0 f = 2\pi r B_{\phi}$$
$$= j_0 \left(\beta_{p0} \frac{r}{r_0} + (1 - \beta_{p0}) \frac{r_0}{r}\right) (1 - A \psi_n^2)$$

Fitted to magnetic measurements (about 80 channels) Obtained paramters are $\beta_{p0} \sim 1, A \sim 8$

Features of RF Start-up Plasma Equilibrium

- high β_p
- large outboard boundary current
 - Outboard co-PS current is dominant, while inboard counter-PS current is truncted.
- Steep pressure gradient at the outboard boundary

Soft X-ray flux and temperature are roughly consistent with the pressure deduced from equilibrium reconstruction.

Completely CS-less Start-up to $I_p = 10 \text{ kA}$ Achieved in TST-2

New Start at the Univ. Tokyo Kashiwa Campus

- Resume operation at Kashiwa
 - Solenoidless start-up
 - Based on results of JT-60U
 - Reconnection physics
 - Reconnection Events
 - Ion heating
 - Turbulence and transport
 - Develop fluctuation diagnostics
 - HHFW heating / current drive
 - 10-30MHz / 400 kW
 - k_{||} control (new antenna)
 - Prepare LHCD system
 - 200MHz / 400kW (from JFT-2M)

TST-2

100kW of RF Power Injected Successfully

TST-2 –

 $B_t = 0.3 \text{ T}, \text{ f} = 21 \text{ MHz}, \text{ n} = 10,$ $n_e = 2 \times 10^{19} \text{ m}^{-3}, \text{ T}_e = 0.3 \text{ keV}$

HHFW Antenna

Preparation in Progress for 200 MHz Experiments

TST-2 –

200 MHz transmitters (from JFT-2M)

Combline antenna

Full-wave calculation by TASK/WM

 $B_t = 0.3 \text{ T}, \text{ f} = 200 \text{ MHz}, \text{ n} = 10,$ $n_e = 2 \times 10^{18} \text{ m}^{-3}, \text{ T}_e = 0.3 \text{ keV}$

A New Experiment to Explore Ultra-High β Plasma Formation by Plasma Merging

UTST

Summary

- Successful EBW heating demonstrated
 - X-B mode conversion scenario
 - Absorption > 50% under favorable condition
- Solenoidless start-up demonstrated
 - 4kA for 0.3s (RF only)
 - Equilibrium with large current at the outboard boundary
 - 10kA (RF + induction by outer PF coils)
- Preparation in progress for RF experiments
 - 20MHz HHFW
 - 200MHz LH (from JFT-2M)
- New experiment in preparation (UTST)
 - Merging formation of high- β plasma (reconnection heating)
 - Sustainment by RF/NB