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Progress of NSTX Program in Physics Basis for
10-MA Devices — Component Test Facility (CTF)

Y.-K. M. Peng (ORNL, UT-Battelle @ PPPL) & NSTX Team
Recent progress in Spherical Torus (ST) plasma science has indicated
relatively robust and attractive physics conditions in a number of topical
areas including shaping, stability limits, energy confinement, self-driven
current, sustainment, and divertor heat flux. This progress has enabled
an updated projection of the plasma conditions of a 10-MA ST such as
the Component Test Facility (CTF), which is a necessary step in the
development of practical fusion energy. The results indicated designs
with R, = 1.2 m, A= 1.5, elongation « ~ 3, B; ~ 2 T, producing a fusion
burn power of 140 MW, and a fusion neutron flux of 2 MW/m2, driven by
50 MW of combined neutral beam and RF heating and current drive
power. The design uses a single-turn toroidal field coil center leg without
a central solenoid, and will require physics data on solenoid-free plasma
current initiation, ramp-up to, and sustainment at multiple MAs. An
assessment of the ST physics basis to establish the design of such a
10-MA device and comparison with the present and planned
achievements of the NSTX Program will be presented.
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CTF — A Facility Required for Developing Engineering
and Technology Basis for Fusion Energy

INL operated 45 small research fission facilities during 1951-69

Necessary fusion Demo-relevant testing environment:
[M Abdou et al, Fusion Technology, 29 (1999) 1.]

 High 14 MeV neutron flux over large wall areas
 High duty factor to achieve high neutron fluence per year
 High accumulated fluence in facility lifetime

Test tritium self-sufficiency — CTF goal: 80 — 100% recovery

This presentation:
 Programmatic importance
» Desired engineering features

 Plasma and device parameters based on latest physics
understanding

« Database needs in physics, engineering, & technology
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CTF Bridges Large Gaps between ITER and Demo in
Tritium Self-Sufficiency, Duty Factor, Neutron Fluence,
and Divertor Heat Flux

Fusion Power Conditions ITER CTF Demo
Tritium self-sufficiency goal (%) >80 >100
Sustained fusion burn duration (s) ~103 >10%7 | ~1078
14-MeV neutron flux on wall (MW/m?) ~0.8 1-2 ~3
Duty factor (%) ~2 >30 75
Accumulated neutron fluence (MW-yr/m?) | ~0.3 >6 6—20
Divertor heat flux challenge, P/R (MW/m) 24 30-48 97
Total area of (test) blankets (m?) ~12 ~65 ~670
Expected fusion power (MW) ~500 | 72-144 | 2500

« CTF provides prototypical fusion power conditions at reduced size and
power

» Potential to “buttress” ITER & IFMIF in accelerating development of
fusion power [l Cook et al., UKAEA FUS 521 (Feb. 2005)]

 DOE Office of Science 20-Year Strategic Plan for Fusion includes CTF to
succeed ITER construction
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DOE Office of Science 20-Year Strategic Plan for
Fusion Includes CTF to Succeed ITER Construction

Strategic Timeline—Fusion Energy Sciences™
K

2015

2017 2019

The Science

Burning Plasma Demonstration

* Initiate experiments on the
National Ignition Facility
(NIF) 1o study ignition and
burn propagation in 1FE-

* Complete experiments on NIF to advance the
: i . science of ignition and burn propagation x - .

+ Completc ITER experiments  needed o design oprimized fisel pellets foran * '?o’d'l"“ :'g" fusion power
to determine plasma Inerrial Fusion Energy plant (2020) i il 2l ITER
confinement in parameter  * Complete experiments on ITER 1o determine 10 d‘:ﬁ“l‘ ENEICEDIE
range required for an energy- the impact of the fusion process on the requirements for fusion

relevant fuel pellets (2012) producing plasma (2017) stability of energy-producing plasmas (2020) power planrs (2025)
= * Major aspects relevant to burning plasma behavior observed
Fundamentals of Plasma Behavior i el elicied o
er t'uI"P ete ln['.'gl‘.ll
* Achieve a fundamental understanding of Lr\\'.er-p_rt_n_lm_'ing
tokamak transport and stability in ITER
ITER plasma experiments (204 H H H
i » Complete first round of testing in a
* Evaluate HH H
Plasma Confinement component test facility to validate
S f the

* Achieve long-duration, high-pressu.
in a spherical torus sufficient ro desi,
power-producing Next-Step Spherica
Demonstrate use of active plasma cont
plasma current 1o achieve high-pressure;
steady-state operation for ITER (2008)

= Evaluate the feasibiliny/atractives
including heavy ion beams, dense plas
for fusion approaches involving high-energy

Materials, Components, and Technologies

testing the blanker
test modules needed
o demonstrate the
feasibility of
extracting high-
temperature heat
from burning
plasmas and for a
selsufficient fuel
eyele (2013)

* Start production of superconducting
wire needed for ITER magners (2006)

the performance of chamber mple
technologies needed for a power-
producing fusion plant (2025)

. Deliver o ITERfor e ———m_m

test

e

Complete first phase of testing in ITER of
blanket technologies needed in power-
producing fusion plants capable of extracting
high-temperature heat from burning plasmas
and having = et oY L24)

* Complete first round of testing in a
component test Bcility to validate
the performance of chamber
technologies needed for a power-
producing fusion plane (2025)

Component
Test Facility

Fumre Facilz‘ties %K ITER TTER i d0 insceraiional callshorstion to build the fesk Rision ecience experiment

capable of producing a self-sustaining fusion reaction, called a ving plasma,”
Next-Step Spherical Torus (NSST)
Experiment: The NSST will be designe:
to test the spherical torus, an innovative
concept for magnetically confining a
fusion reaction.

*These strategic milestones are illustrative and depend on funds made available through the Federal budget process.

**For more detail on these facilities and the overall prioritization process, see the companion document,

Facilities for the Future of Science: A Tiwenty-Year Outlook.

Fusion Energy Contingency: If ITER construction and operation goes forward as planned,
additional facilities to develop and rest power plant components and materials will be needed 1o
complete the process of making fusion energy a viable commercial energy resource by mid-century.

Integrated Beam Experi (IBX): The IBX will be an intermediate-scale
experiment to understand how to generate and transmit the focused, high-
energy ion beam needed to power an IFE reaction.



Projected World Tritium Supply Necessitates
Testing in CTF Before Implementation in Demo

30

an ply
20 / / w/o Fusion

Projected Ontario (OPG) Tritium

15 iy :
5 World Max. tritium supply is 27 kg A
< 10
= Tritium decays at a rate of 5.47% per year 10-15 Kg
§ S 9
g

O1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045

Year

* ITER uses ~11 kg T to provide 0.3 MW-yr/m2; 10-15 kg remains

* Demo burns tritium @ 2.7 kg/week to produce 2500 MW fusion power
e« To accumulate 6 MW-yr/m? (component testing mission), and
assuming 80% breeding fraction,
 Demo requires 56 kg
« CTF requires 4.8 kg
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Features of Optimized ST Fulfill the CTF Mission
Effectively

g Pguio. gy Seemes Odw, Y & Natural elongation at low ¢, >

R — simple shaping coils
| 11
Ei !//0 l;¢ ~ |,; moderate B; — slender,

demountable, single-turn TF
center leg

¢ No central solenoid — no

l A I/ inboard nuclear shielding
[ - -
i
i

¢ No inboard blanket —» compact
ST device with small radius &
aspect ratio

¢ ~5% fusion neutrons lost to
center leg — high tritium
breeding ratio

¢ Culham CTF:. more compact,

less fusion power, same W,
[H Wilson et al., IAEA FEC 2004, FT/3-1a.]

Rp=12m,a=0.8m
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Mid-Plane Test Modules, Neutral Beam Injection, RF,
Diagnostics Are Arranged for Direct Replacement

To maximize
potential for high
duty factor operation

| —_———————————— “ big eeaciad
-] \L\ \ \; = Remote Handling
L:s;e ~.\~1 \'_-:_:\x_ \\ y
4
« 8 mid-plane blanket test modules provides ~ 15 m2 at maximum flux

« Additional cylindrical blanket test area > 50 m2 at reduced flux
« 3m2mid-plane access for neutral beam injection of 30 MW
2 m2 mid-plane accesses for RF (10 MW) and diagnostics
All modules accessible through remote handling casks (~ITER)
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CTF Allows
Remote Access
to All Fusion Core
Components

Vertical access via
shielded, load-bearing,
evacuated cask

------
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Upper Piping
Electrical Joint
Toﬂ* .

* Disconnect upper piping
* Remove sliding electrical joint
* Remove top hatch

DPP APS 2005

Machine Assembly/Disassembly
Sequence Are Made Manageable

e Hands-on connect and disconnect service lines
outside of shielding and vacuum boundaries

« Divertor, cylindrical blanket, TF center leg, and
shield assembly removed/installed vertically

EI\ Upper Blanket Assy Centerstack i

Assembly Shield

Upper PF coil
/ Upper D!vertor Lower Blanket Assy Assembly
; Lower Divertor
Lower PF coil !

* Remove upper PF coil * Extract NBI liner + Remove centerstack assembly * Remove shield assembly
* Remove upper divertor * Extract test modules

* Remove lower divertor * Remove upper blanket assembly

* Remove lower PF coil * Remove lower blanket assembly
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CTF Should Utilize Attractive ST Physics Properties

NSTX ——

Proof of Principle: Utilizes applied field efficiently

» Strong plasma shaping & self fields
(vertical elongation ~ 3, B, /B, ~ 1)

 Very high B; (~ 40%) & bootstrap current
Contains plasma energy efficiently
« Small plasma size relative to gyro-radius
(a/p;~30-50)
* Large plasma flow (M, =V, iaiion! Va < 0.4)
» Large flow shearing rate (yg,z < 10°/s)
i Disperses plasma fluxes effectively
 Large mirror ratio in edge B field (f; ~ 1)
» Strong SOL expansion
= Allows easier solenoid-free operation
. « Small magnetic flux content (~ /Rl
Heating and Current Drive opportunities
: D)) A7 I\ * Supra-Alfvénic fast ions (V ,/V, ~ 1-5)
: ,,»-;C%?’,f’_ﬁ NN,

 Show CTF scientific feasibility

 |[dentify reliable operating regime

Shot= 115911, time= 329ms

| le High dielectric constant (g = ®pe?l0% ~ 50)

2 -1 0 2
R(m) NSTX Results & Plans-10 MA



NSTX Dramatically Expanded the Spherical Torus

Operating Space to Clarify Future ST Options

NSTX ——

2005 Campaign

* Improved divertor coils

 Extended plasma to stronger shapes

e High triangularity at high elongation leads
to quiescent core and edge conditions

Old divertor coil ~ Mod divertor coil ARIES-ST =
-------------------------------------------------
2004 [J Menard] 2005 ‘Stronger ® 20 I
0.80 PRI - Shapes (&) i
) o ° = L4 4 C
- { © 2002-2003 ]
0.75 « o | e 15 _
o - o L :
2 e : "7 Plasma Stored | j=g I 2004 ]
= 0 D > t ® * * Energy = 430kJ; | & I% 1 0 B ' 2005 f‘TF —>
= | eee e | %% ® o Current=1.4MA| - _Z ﬁ. A
> 065  ° . o ° oS AA ‘
% E % °0’5’ C__U
= I ® e o qi’oo B
= 060 ‘3 Roow o | £ 5 i
*of o o ° . - o
e Plasmas That
S . ’ &‘ °3, e  Reached - Z o [ [D Gates]
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Vertical Elongation

Energy Replacement Times

NSTX Results & Plans-10 MA



NSTX Data Map a Large Domain in B and fg In
Which to Design Reliable CTF Operation

NSTX ——

l, / aBy, (MA/mT)

50 ' | ' T :
;3333 2003 By=6 - Higher « (= 3.2) designed for
40" ] E CTF would provide increased
o 5 margin in (I,/aB,), fzs, and
‘69‘ : ] qC
L o g yl
= 30; oo 4 -
o %008 B 06] s ra T NSTX
g 20 : / 1 . s },’ . Yo, @L
2 A% o 1 5 . FY01-03 »*,
- " o8 S 1= i s S
10 ';:-l‘:. oo ’ - S @
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C 4_";-_,_4- Aspect Ratio E A -4
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Initial CTF Parameters Are Estimated Based on the
Design Concept & Present Physics Understanding

Systems Code =>R;,=12m,a=08m,kx=3.2,B;=25T

14MeV neut. flux, MW/m? 1.0-2.0 4.0
l,, MA 9.1-12.8 16.1
Combined Hgg,p,, factor 1.6-1.5 1.38
Br, % 14-24 39
BnHgop 9.0-11.3 16
Safety factor, q,, 4.2-3.0 2.4
N/Ngy 0.16-0.17 | 0.21
lgs/l, 0.52-0.43 | 0.44
Pusions MW 72-144 288
Prgisre: MW 36-47 65
Neutral beam energy, kV 112-160 250
fragr %0 (for Py, = 15 MW/m?) 65-79 90
Net Tconsumption/Yr 90al, gm 0-14 180

* Baseline (1-2 W/m?2) parameters
within ST plasma operation
limits

 Higher neutron fluxes reach
progressively more limits

* In B3, Oey and f._
* Requires densities ~ 20% limit

 Technology & physics of CTF
advances in synchrony

e 1-2 MW/m2 — medium ST
physics to test technologies
beyond ITER

4 MW/m2 — more advanced ST
physics to test DEMO level
technologies

DPP APS 2005
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CTF Stable B Values Rely on Continued Progress in
ST Macro-Stability Research

NSTX ——

Sustained Parameters CTF Long Pulse Data
(T >> Tgin) (T > Tgyin)
| /aB; (MA/m-T) 46-6.4 <4.4
Safety factor, gy, 4.2-3.0 >2.2
By (Y%-m-T/MA) 3.1-3.9 <5
B (%) 14 — 24 <23
Start-up to py/;Rl, (Wb) >3.8 ~0.13 (goal)

Required Investigations

reliability & higher

« Macro-stability near CTF conditions: k < 2.7 and t >> 1,
 Error field & resistive wall mode, with strong plasma rotation, toward high

» Solenoid-free start-up to ~ 0.5 MA plasma target for NBl and EBW

Issue: solenoid-free startup [R Raman]

DPP APS 2005
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Error Field Reduction Are Shown to Improve Plasma

Sustainment at High
NSTX ——

Plasma current (kA)

e Passive plate and feedback coils influence 80 1 “1\‘. el i
modes in manners similar to ITER blankets jzz I K | I )
o 0n0O - | | | =
and nearby control coils positions 200 [ 17571 AR i
[ 117574

* |s there a error field threshold, below which o) Sk e

high B can be sustained indefinitely? 200 PN coll# corent (Amperes)
100 + : : : _

[J Menard, S Sabbagh, J Bialek] ol ' ]
NSTX [ | ] H _
EFITO1 shot=111959, ima=277ms ITER inner -100 | | I 4
?| vessel outline [ \ U '

'K ITER plasma Locked Mode Amplitude (Gauss)

boundary shape I

N R O

NSTX RWM/EF
feedback coils

I
I
I
I
I
|
I
I

Z(m)

O = N Wk 0D

6 new ex-vessel control coils 7

\ b .
+ 48 in-vessel sensors 00 05 10 15 20 0.2 04 06 0.8 1.0
R(m) seconds

N s VA
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CTF Confinement Assumptions Are Suggested by
Long-Pulse Plasmas in NSTX & MAST
NSTX ——

- Long-pulse H-mode
Sustained CTF Long Pulse Data e E—
Parameters | (t >> 1) (T > Teyin) |0

_ s 19 T By

(THKT.) ~2 <1.5 via co-NBI Sl T P
NNy ~0.2 0.2-0.8,rsing in pulse | @
alp, F1/p/¥) ~50 ~30
Hogpby2 <1.5 <1.3 for >tg,

Required Investigations
« Strongly rotating plasma with ion “internal

transport barrier” via co-NBI ¢

- el © 200
* Density control at low ng,,, such as via lithium E E
« Electron transport vs. B effects: 1, [S Kaye] >%100
* lon transport vs. neoclassical: 1 o [RBell, BLeBlanc] A\

20 40 60 80 100 120 140 160

RADIUS (cm)
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NSTX Has Made Significant Progress Towards
Goal of High-B,, Non-Inductive Operation

NSTX ——

1l MAL" ghot 113460 W
9 : ,-—J]I_B—Ilpoyver (/10 MW) |
- Br (%) :
15[ |
L Loop voltage (V) ]
0.0 ‘A&
1.0 ]
0.5 g BIO
0 7 Internal inductance
10 lLine n_ (104 cm2 |
ol ,

0.0 0.2 0.4 0.6 0.8
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Tip flattop ~ 2 Tyin

Tw flattop ~9 U=

e B+>23%, By >5.3
* Hggp ~ 2
e |nternal inductance ~ 0.6

e n,~ 0.6x10%3 /cm3

e 1.5-s pulses in 2005

time (s)

[J Menard, D Gates]
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ST Research Addresses CTF Heating & Current Drive
Physics in the Same Regime

Sustained Parameters CTF Long Pulse Data
(T >> Tskin) (T > Tskin)

VFast/ VAvaén 3-6 1-4

I/l ~0.5 <0.3
IBS+diam+PS/Ip ~0.5 <0.6

P/R (MW/m) 30 - 48 <9

SOL area expansion 10 - 20 ~5
Radiation fraction (%) 65— 79 <30

NSTX ——

CTF Plasma Shape &
Stable Current Profile

i

Required Investigations
e Supra-Alfvénic ion driven modes, transport, and current

 Combined NBI-EBW, stable long-pulse operation with good
confinement and substantial B/S and driven currents

* Innovative divertor physics solutions
—lithium divertor (NSTX); divertor biasing (MAST)

(i-BY/{B-Vg)

DPP APS 2005
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NSTX Is Studying Super-Alfvénic

lon Heating for ITER and CTF

e NSTX has, and ITER will have, Super-Alfvénic ions

» NSTX measured: instabilities driven by such fast
lons & coincidental fast ion losses, but persistent
losses not yet understood

* Interactions encouraged by small p.,..* (ITER),
copious fast ions (both), and Doppler shifted
resonance with Alfvén instabilities (both)

o Will fusion a’s in ITER & CTF suffer similar
losses?

* Only NSTX also has current profile measurement
(MSE), important in determining mode number, n

ARIES-ST

Normalized Fast lon Speed
Q
_|
M
Super-Alfveénic

0.0 0.2 0.4 0.6
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22 “Concept Exploration” and “Proof of Principle” STs Are
Working Together toward Common Goals

DPP

Multi-Pinch

LATE
/4 NUCTE-ST
Globus-M Ts-s“
gl TST-2
Multi-Pinch « & UTST
STPC-EX s TTST, QUEST

TCS FRC-ST
Pegasus
CDX-UILTX

L0 MA



ST CTF Has Attractive Physics and Engineering
Features to Fulfill a Critical Fusion Development Need

« CTF required for developing engineering and technology
basis to accelerate fusion energy development

— Bridges large development gaps between ITER and Demo

— Limited tritium supply necessitates CTF testing before
Demo

o ST features fulfill the CTF mission effectively
— Fast replacement of test modules
— Remote access to all fusion core components

o ST promises good physics basis for CTF
— NSTX & MAST results encouraging
— Reliable physics regime identified, away from known limits

o Additional ST physics data needs are identified
URL: http://Instx.pppl.gov/DragNDrop/APS-DPP_05/Posters/
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