Supported by

Progress of NSTX Program in Physics Basis for 10-MA Devices

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL IINI Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

Martin Peng And the NSTX Team

47th Annual Meeting of the Division of Plasma Physics

Denver, Colorado October 24-28, 2005

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvoao U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec NSTX Results & Plans-10 MA

Progress of NSTX Program in Physics Basis for 10-MA Devices – Component Test Facility (CTF)

Y.-K. M. Peng (ORNL, UT-Battelle @ PPPL) & NSTX Team Recent progress in Spherical Torus (ST) plasma science has indicated relatively robust and attractive physics conditions in a number of topical areas including shaping, stability limits, energy confinement, self-driven current, sustainment, and divertor heat flux. This progress has enabled an updated projection of the plasma conditions of a 10-MA ST such as the Component Test Facility (CTF), which is a necessary step in the development of practical fusion energy. The results indicated designs with $R_0 = 1.2$ m, A = 1.5, elongation $\kappa \sim 3$, $B_T \sim 2$ T, producing a fusion burn power of 140 MW, and a fusion neutron flux of 2 MW/m2, driven by 50 MW of combined neutral beam and RF heating and current drive power. The design uses a single-turn toroidal field coil center leg without a central solenoid, and will require physics data on solenoid-free plasma current initiation, ramp-up to, and sustainment at multiple MAs. An assessment of the ST physics basis to establish the design of such a 10-MA device and comparison with the present and planned achievements of the NSTX Program will be presented.

CTF – A Facility Required for Developing Engineering and Technology Basis for Fusion Energy

- INL operated 45 small research fission facilities during 1951-69
- Necessary fusion Demo-relevant testing environment: [M Abdou et al, Fusion Technology, **29** (1999) 1.]
 - High 14 MeV neutron flux over large wall areas
 - High duty factor to achieve high neutron fluence per year
 - High accumulated fluence in facility lifetime
- Test tritium self-sufficiency CTF goal: 80 100% recovery
- This presentation:
 - Programmatic importance
 - Desired engineering features
 - Plasma and device parameters based on latest physics understanding
 - Database needs in physics, engineering, & technology

CTF Bridges Large Gaps between ITER and Demo in Tritium Self-Sufficiency, Duty Factor, Neutron Fluence, and Divertor Heat Flux

Fusion Power Conditions	ITER	CTF	Demo
Tritium self-sufficiency goal (%)		>80	>100
Sustained fusion burn duration (s)	~10 ³	>10 ⁶⁻⁷	~10 ⁷⁻⁸
14-MeV neutron flux on wall (MW/m ²)	~0.8	1–2	~3
Duty factor (%)	~2	>30	75
Accumulated neutron fluence (MW-yr/m ²)	~0.3	>6	6–20
Divertor heat flux challenge, P/R (MW/m)	24	30–48	97
Total area of (test) blankets (m ²)	~12	~65	~670
Expected fusion power (MW)	~500	72–144	2500

- CTF provides prototypical fusion power conditions at reduced size and power
- Potential to "buttress" ITER & IFMIF in accelerating development of fusion power [I Cook et al., UKAEA FUS 521 (Feb. 2005)]
- DOE Office of Science 20-Year Strategic Plan for Fusion includes CTF to succeed ITER construction

DOE Office of Science 20-Year Strategic Plan for Fusion Includes CTF to Succeed ITER Construction

Projected World Tritium Supply Necessitates Testing in CTF Before Implementation in Demo

- ITER uses ~11 kg T to provide 0.3 MW-yr/m²; 10-15 kg remains
- Demo burns tritium @ 2.7 kg/week to produce 2500 MW fusion power
- To accumulate 6 MW-yr/m² (component testing mission), and assuming 80% breeding fraction,
 - Demo requires 56 kg
 - CTF requires 4.8 kg

Features of Optimized ST Fulfill the CTF Mission Effectively

Mid-Plane Test Modules, Neutral Beam Injection, RF, Diagnostics Are Arranged for Direct Replacement

- 8 mid-plane blanket test modules provides ~ 15 m² at maximum flux
 - Additional cylindrical blanket test area > 50 m² at reduced flux
- 3 m² mid-plane access for neutral beam injection of 30 MW
- 2 m² mid-plane accesses for RF (10 MW) and diagnostics
- All modules accessible through remote handling casks (~ITER)

DPP APS 2005

sults & Plans-10 MA

DPP APS 2005

NSTX Results & Plans-10 MA

CTF Should Utilize Attractive ST Physics Properties

Proof of Principle:

- Show CTF scientific feasibility
- Identify reliable operating regime

Utilizes applied field efficiently

- Strong plasma shaping & self fields (vertical elongation ~ 3, $B_p/B_t \sim 1$)
- Very high β_T (~ 40%) & bootstrap current

Contains plasma energy efficiently

- Small plasma size relative to gyro-radius (a/ρ_i~30–50)
- Large plasma flow (M_A = V_{rotation}/V_A \le 0.4)
- Large flow shearing rate ($\gamma_{\text{ExB}} \leq 10^{6} / s)$

Disperses plasma fluxes effectively

- Large mirror ratio in edge B field ($f_T \sim 1$)
- Strong SOL expansion

Allows easier solenoid-free operation

Small magnetic flux content (~ l_iR₀I_p)

Heating and Current Drive opportunities

- Supra-Alfvénic fast ions ($V_{fast}/V_A \sim 1-5$)
- High dielectric constant ($\epsilon = \omega_{pe}^2 / \omega_{ce}^2 \sim 50$)

NSTX Dramatically Expanded the Spherical Torus Operating Space to Clarify Future ST Options

DPP APS 2005

NSTX Data Map a Large Domain in β_T and f_{BS} in Which to Design Reliable CTF Operation

β_T (%)

Initial CTF Parameters Are Estimated Based on the Design Concept & Present Physics Understanding

Systems Code \Rightarrow R₀ = 1.2 m, a = 0.8 m, κ = 3.2, B_T = 2.5 T

14MeV neut. flux, MW/m ²	1.0-2.0	4.0
I _p , MA	9.1-12.8	16.1
Combined H _{98pby} factor	1.6-1.5	1.38
β _T , %	14-24	39
$\beta_{N}H_{89P}$	9.0-11.3	16
Safety factor, q _{cyl}	4.2-3.0	2.4
n/n _{GW}	0.16-0.17	0.21
I _{BS} /I _p	0.52-0.43	0.44
P _{fusion} , MW	72-144	288
P _{NBI+RF} , MW	36-47	65
Neutral beam energy, kV	112-160	250
\mathbf{f}_{rad} , % (for $\mathbf{P}_{div} = 15 \text{ MW/m}^2$)	65-79	90
Net T _{consumption} /yr goal, gm	0-14	180

- Baseline (1-2 W/m²) parameters within ST plasma operation limits
- Higher neutron fluxes reach progressively more limits
 - In $\beta,\,\textbf{q}_{\text{cyl}},\,\text{and}\,\textbf{f}_{\text{rad}}$
 - Requires densities ~ 20% limit
- Technology & physics of CTF advances in synchrony
 - 1-2 MW/m² medium ST physics to test technologies beyond ITER
 - 4 MW/m² more advanced ST physics to test DEMO level technologies

CTF Stable β Values Rely on Continued Progress in ST Macro-Stability Research

Sustained Parameters	CTF Long Pulse Dat	
	(τ >> τ _{skin})	$(\tau > \tau_{skin})$
I _p /aΒ _T (MA/m-T)	4.6 - 6.4	≤4.4
Safety factor, q _{cyl}	4.2 - 3.0	≥2.2
β _N (%-m-T/MA)	3.1 – 3.9	≤5
β _T (%)	14 – 24	≤23
Start-up to $\mu_0 \ell_i RI_p$ (Wb)	≥3.8	~0.13 (goal)

Required Investigations

- Macro-stability near CTF conditions: $\kappa \leq$ 2.7 and τ >> τ_{skin}
- Error field & resistive wall mode, with strong plasma rotation, toward high reliability & higher β_{N}
- Solenoid-free start-up to ~ 0.5 MA plasma target for NBI and EBW

Issue: solenoid-free startup [R Raman]

Error Field Reduction Are Shown to Improve Plasma Sustainment at High $\boldsymbol{\beta}$

CTF Confinement Assumptions Are Suggested by Long-Pulse Plasmas in NSTX & MAST

Sustained Parameters	CTF (τ >> τ _{skin})	Long Pulse Data (τ > τ _{skin})
$\langle T_i \rangle / \langle T_e \rangle$	~2	≤1.5 via co-NBI
n _e /n _{GW}	~0.2	0.2 – 0.8, rising in pulse
a/ρ_i (=1/ ρ_i^*)	~50	~30
H _{98pby2}	≤1.5	\leq 1.3 for > τ_{skin}

Required Investigations

- Strongly rotating plasma with ion "internal transport barrier" via co-NBI
- Density control at low n_{GW}, such as via lithium
- Electron transport vs. β effects: τ_{Ee} [S Kaye]
- Ion transport vs. neoclassical: τ_{Ei}

NSTX Has Made Significant Progress Towards Goal of High- β_{T} , **Non-Inductive Operation**

• $\tau_{\text{lp flattop}} \sim 2 \tau_{\text{skin}}$

- $\tau_{W \text{ flattop}} \sim 9 \tau_{E}$
- $\beta_{\rm T} > 23\%, \ \beta_{\rm N} > 5.3$
- H_{89P} ~ 2
- Internal inductance ~ 0.6
- n_e ~ 0.6×10¹³ /cm³
- 1.5-s pulses in 2005

[J Menard, D Gates]

ST Research Addresses CTF Heating & Current Drive Physics in the Same Regime

Sustained Parameters	CTF (τ >> τ _{skin})	Long Pulse Data (τ > τ _{skin})
V _{Fast} /V _{Alfvén}	3 – 6	1 – 4
I _{CD} /I _p	~0.5	≤0.3
I _{BS+diam+PS} /I _p	~0.5	≤0.6
P/R (MW/m)	30 – 48	≤9
SOL area expansion	10 – 20	~5
Radiation fraction (%)	65 – 79	≤30

Required Investigations

- Supra-Alfvénic ion driven modes, transport, and current
- Combined NBI-EBW, stable long-pulse operation with good confinement and substantial B/S and driven currents
- Innovative divertor physics solutions

- lithium divertor (NSTX); divertor biasing (MAST)

VVV Results & Plans-10 MA

22 "Concept Exploration" and "Proof of Principle" STs Are Working Together toward Common Goals

ST CTF Has Attractive Physics and Engineering Features to Fulfill a Critical Fusion Development Need

- CTF required for developing engineering and technology basis to accelerate fusion energy development
 - Bridges large development gaps between ITER and Demo
 - Limited tritium supply necessitates CTF testing before Demo
- ST features fulfill the CTF mission effectively
 - Fast replacement of test modules
 - Remote access to all fusion core components
- ST promises good physics basis for CTF
 - NSTX & MAST results encouraging
 - Reliable physics regime identified, away from known limits
- Additional ST physics data needs are identified

URL: http://nstx.pppl.gov/DragNDrop/APS-DPP_05/Posters/