

Development of Particle and Impurity Control Techniques for NSTX

College W&M **Colorado Sch Mines** Columbia Univ Comp-X **General Atomics** INEL Johns Hopkins Univ LANL LLNL Lodestar MIT Nova Photonics **New York Univ Old Dominion Univ** ORNL PSI **Princeton Univ** SNL Think Tank, Inc UC Davis **UC** Irvine UCLA UCSD **Univ Colorado** Univ Maryland **Univ Rochester Univ Washington Univ Wisconsin**

M.G. Bell, H.W. Kugel, D.A Gates, D. Mueller, R. Kaita, C.H. Skinner, B.C. Stratton (PPPL), R. Maingi (ORNL), V. Soukhanovskii (LLNL), R. Raman (UWashington)

> 47th Annual Meeting Division of Plasma Physics American Physics Society Denver, CO 24 – 28 October 2005

* Supported by US DOE contract DE-AC02-76CH03073

Culham Sci Ctr Univ St. Andrews York Univ Chubu Univ Fukui Univ Hiroshima Univ Hyogo Univ Kyoto Univ Kyushu Univ Kyushu Tokai Univ NIFS Niigata Univ **Univ Tokyo JAERI** Hebrew Univ loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **Univ Quebec**

NSTX Uses and Is Developing Many Techniques for Vacuum Conditioning, Density Control and Fueling

- 350°C bakeout of Plasma Facing Components (PFCs) and 150°C bakeout of other vacuum components after vacuum openings
- Boronization using glow discharge in mixture of Helium (90%) and deuterated-Trimethyl Boron (B(CD₃)₃, TMB) (~10%, ~10g total)
 - During bakeout (Hot boronization)
 - Routinely at room temperature at intervals of 10 20 days of operation
 - At start of a day of operation using a reduced amount of TMB, ~1g
- Helium glow discharge cleaning between shots: 5 15 min
 - Recently supplemented fixed anodes on wall with Movable Glow Probe anode for more uniform coverage and operation at lower gas pressure
- Lithium Pellet Injector for coating PFCs with lithium
 - Also used for plasma perturbation experiments
- Gas puffing into divertor private flux region reduces divertor heat flux

High κ , δ with New PF Coils Concentrate Plasma Interaction onto Inboard Divertor

- Highest κ = 2.7 now obtained at highest $\delta \approx 0.8$
- Small ELM regime in H-mode recovered at high κ > 2.5 with new coils
 - Reduces rate of density rise without deleterious effect on W_{tot}

Significant Improvement in Performance Immediately Following Hot Boronization

- ~30 Boronizations (~10g TMB each) have been applied with surfaces at room temperature
 - Reduce oxygen impurities and improve H-mode access
 - Essential to follow TMB with pure He-GDC to remove adsorbed D
- Two Hot Boronizations have been applied with plasma facing surfaces at 350°C and vessel surfaces at 150°C
 - Applied during bakeout after vent and entry to vacuum vessel
 - Performed after water peaks in RGA spectrum had reached slow decay phase (e-folding decay time of several days)
- Compare Hot and Cold Boronizations using fiducial discharges:
 - Lower Single-Null (LSN) divertor discharges, 0.6MA, OH only
 - LSN divertor discharges, 0.8MA, NBI heating

After Hot Boronization, Ohmic Discharges Exhibit Lower D_{α} and Readily Transition to H-mode

- I_p (kA) 500 H-mode 1.0 $P_{OH}(W)$ 0.5 0.2 0.0 D_{α} (arb.) 0.1 0.0 n_e (10²⁰m⁻³ 0.1 1.306m 1.331m 1.377m 0.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Time(s)
- Lower initial D_{α} may be due to
 - Less codeposited D_2 in boron film
 - Reduced porosity and trapping sites
- Benefit of hot relative to room temperature TMB declined over ~50 discharges
 - reached similar D_{α} levels
 - NBI H-modes still readily obtained

Brief Boronization Can Restore Conditions After an Earlier Full Boronization

- Performed at start of a day of operation using reduced amount of TMB
 - Takes ~15 minutes to process ~1g TMB
 - Must be followed by comparable or longer period of HeGDC
 - Reduces oxygen contamination and regains H-mode access
- Not a substitute for a full boronization
- Between-shots boronization (0.1g TMB) adversely affected duty cycle due to time required for subsequent pure HeGDC
- Additional brief boronizations and between-shots-boronization do not improve surface conditions, if enough boron is already on the wall

Helium GDC Routinely Applied Between Shots to Control Deuterium Recycling and Impurities

- Previously employed two fixed anodes mounted on outer wall
 - 2 4 mTorr (0.25 0.5 Pa)
 - -~1.5A per anode
- Applied for 5 15 min.
 - Longer promotes earlier H-mode
 - Benefits high- β , pulse length

- Recently supplemented fixed anodes with a movable anode
 - Extensive experience not yet accrued
 - ~2 min insertion/withdrawal time

OH Helium Discharges Can Supplement HeGDC for Removing Adsorbed Deuterium From PFCs

- Ohmically heated helium discharges were effective in removing deuterium from carbon surfaces in TFTR
- In NSTX OH-He discharges limited on center-stack produced rapid drop in D_{α} emission initially but reduction asymptoted at ~40% after ~6 shots

1

0.5

- CIII emission from chord viewing inner limiter remained constant

following a D₂-fueled NBI shot 4 3.5 Dalpha Signal s (arb units) 3 2.5 2 r Stack D 200 ms Center @ 2

116986 116988 116990 116992 116994

Discharge Number

NSTX: Sequence of OH-He discharges

116996

Recent Record Pulse-Lengths Highlight Need for Additional Density Control

• H-mode with small ELMs \Rightarrow slows density rise

- Density rises until onset of saturated n=1 mode as $q(0) \rightarrow 1$
- Probably coincidentally, density reaches Greenwald limit at this time Bell, M. / DPP05, Denver / 051027

Long Duration Discharges Exceed 70% Non-Inductive Current During High-β Phase

- TRANSP model agrees with measured neutron rate during high-β phase
- TRANSP over-predicts neutron rate early and late when low-f MHD present
 - Fast-ion diffusion and/or loss likely
 - Assessing impact on J_{NBI} profile and q-profile
- 85% of non-inductive current is ∇p-driven
 - Bootstrap + Diamagnetic + Pfirsch-Schlüter

Greenwald Limit Does Provide a Practical Limit on Density in NTSX Gas-Fueled Plasmas

Data for ~2800 shots in 2004–5 with deuterium and helium gas fueling
NB fueling is also significant in longer pulse discharges

NSTX Lithium Pellet Injector Used to Coat Plasma Contact Surfaces with Lithium

• Sabot-style injector for

- solid pellets (<1 5 mg) &
- powder (micro-pellets)
- 10 200 m/s radial injection
- 1 8 pellets per discharge
- 400 pellet capacity

• 111 mg injected using 0.4 – 5 mg pellets, 100-150 m/s, 1-2 pellets/shot

Plasma TV in Li I light

approaching center-stack

First Experiment on Lithium Wall Pumping: Discharges Limited on Center Stack

- Attempt to replicate TFTR experience with lithium deposition on C
 - TFTR: Plasma volume ~35m³; inner limiter wetted area ~10m²
 - NSTX: Plasma volume ~12 m^3 ; inner limiter wetted area <2 m^2
- "Pre-condition" surface with sequence of OH helium discharges
 - TFTR prescription: need to reduce deuterium recycling first
- Run three deuterium discharges in same configuration with NBI heating: reference shots
- Fire lithium pellets (1.7 5 mg) into sequence of similar OH helium discharges
 - 1 or 2 pellets per discharge
 - 30mg total lithium in sequence
- Run series of deuterium discharges with NBI
 - Compare with reference shots to assess effect on density and profile
- Process was then repeated with 24mg lithium deposited

Lithium Produced an Immediate, Dramatic Reduction in Density but Benefit Short-Lived

- Density after end of gas puff reduced by factor >2 after lithium coating
 - Rate of density rise matched NB fueling after initial rapid pumpout
 - Density profile quite peaked in both pre- and post- lithium cases
- Effect had dissipated on second similar shot

Bell, M. / DPP05, Denver / 051027

Second Experiment: Lower Single-Null Divertor Discharges

- Similar methodology as for limiter case
 - No precedent from TFTR, but LTX suggested benefits
- "Pre-condition" divertor surface with sequence of OH helium discharges
 - Contact area on divertor much smaller: <1m²
- Run three reference deuterium discharges in same configuration with NBI heating
- Fire lithium pellets (1.7 5 mg) into sequence of similar OH helium discharges
 - 25 mg total lithium in sequence
- Run series of deuterium discharges with NBI
 - Compare with reference shots

In Divertor Discharges, Effect Again Dramatic but Short-Lived

- Density after end of gas puff reduced by factor >2 after lithium coating
 - Rate of density rise below NB fueling rate after initial rapid pumpout
 - Density profile peaked in *both* pre- and post- lithium cases
- Slight effect apparent on second similar shot but absent on third

Bell, M. / DPP05, Denver / 051027

Capability to Control Edge Density Will Enhance H-mode Pedestal Experiment with MAST, DIII-D

R. Maingi (ORNL), A. Kirk (MAST), T. Osborne (DIII-D) 17

Bell, M. / DPP05, Denver / 051027

Puffing Deuterium into Private Flux Region Reduces Outer Divertor Heat Flux by Factor 2–4

- No change in inner divertor heat flux inner leg already detached
- Evidence for volume recombination from increase in $D_{_{\! \gamma}}\!/D_{_{\! \alpha}}$ ratio
 - Divertor radiation increases but not spatially resolved
- Outer divertor detachment not achieved by midplane injection of D₂ or Ne

– Ne did reduce divertor heat flux by factor 4 by plasma and SOL radiation Bell, M. / DPP05, Denver / 051027 18

Conditioning Plays Important Roles in Achieving NSTX Goals

- Control of impurities crucial for reliably achieving H-mode
 - Broad profiles of H-mode benefit quest for higher β but
 - ELM behavior is important to controlling impurities and density
- Boronization has provided a reliable method of reducing impurities and gaining access to the H-mode
 - Boronization on hot surfaces provides some initial benefits but not sustained relative to room-temperature application
- Helium discharge cleaning to control deuterium recycling can be supplemented by OH helium discharges between NBI shots
 - Achieved significant extension of pulse-length at moderate current
 - Continued density rise in H-mode plasmas may limit further progress
- Demonstrated recycling control with lithium coating in both limiter and divertor plasmas
- Enabling contributions to physics of H-mode, ELMs, pedestal, confinement

Status and Plans

- Building lithium evaporator for coating areas of divertor and wall
 - Draw on experience in LTX (former CDX-U) and with LPI in NSTX
 - Evaporator will be insertable between shots or run-days
 - Deposit lithium on most of the divertor area
- Preparing for installation during current outage which will last until December
 - Plan to be ready for lithium evaporator experiments in 2006 run
- NSTX 2005 Results Review and Research Forum for planning experiments in 2006 will take place December 12 – 16
 - Participation by our collaborators is encouraged
 - Length of 2006 experimental run is not yet known