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Abstract

• Fast (≤0.1 ms) measurements of the electron 
temperature profile, heat and particle transport, and 
MHD activity.

• Signal-to-noise ratio (SNR) can be superior to that 
of diode-based arrays.

• Tangential 48-channel “optical” soft X-ray array 
which views the same plasma volume at the mid-plane, 
in three different energy ranges.

• Time resolution ranging from a few μs to ∼ 1 ms, 
with spatial coverage from 0 ≤ r/a ≤0.9. 



Principles of the “optical” soft x-ray (OSXR) array
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It’s a system that uses a fast (≈1 μs) and efficient scintillator (CsI:Tl) in order to 
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Motivation

• Fast (≤ 100 μs) Te measurements.
(ECE-like diagnostic for STs and Tokamaks)
→ Perturbative electron heat and particle transport (ELMs, pellets, gas-puff and/or SGI).

→ MHD related Te perturbations (ELMs, MHD-modes, RWMs, FISHBONES/EPMs).

• Perturbative impurity transport.
(Gas puff (Ne), Impurity pellets (C, B) and/or SGI)

Our previous work with the USXR and the 1-color OSXR systems have shown
that the measurements proposed are feasible.

• Explore the possibilities of the proposed diagnostic in poloidal
configuration.
→ Viewing the same plasma volumes at three energy ranges.
→ Higher SNR in comparison to diode-based arrays.



Test of a “single-color” array in NSTX (PPPL), 2004

MHD & noise comparison results with the “OSXR”

Shot #: 112069 ⇒ Ohmic Shot Shot #: 112036 ⇒ H-mode
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X-ray continuum radiation

• For a realistic calculation, we consider plasma continuum radiation, (i.e. 
Bremsstrahlung and recombination radiation), described by the radiated X-ray power 

density (Px) per unit of X-ray photoenergy (hν),
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• The factor γ(Te,Z) describes the enhancement of the radiation over Bremsstrahlung
due to free-bound (recombination radiation), assumed to be caused predominantly by 

highly ionized Carbon. A crude estimate is given by,

γ (Te) = 1.0 + 29.0 exp − 2.75 −1.1 Te(keV )[ ]−0.4( )2{ }
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•Assumption: The Abel-inversion was performed ⇒ emissivity profile: εx-ph(r). 
•Question: Can we infer Te?
•Approximations: a) The transmission of the x-ray filter follows a Heavyside function with 

a Ec given by the -3dB transmission (≈50%).
b) The intensity of the line emission from impurities (C & O) is not 

significant in comparison with Bremsstrahlung + recombination (clean plasma).

Te(r) from the X-ray photon emissivity profile: εx-ph(r)
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Why a tangential view?
Because in order to perform an emissivity tomographic reconstructions with a limited number of 

chords, we will have to rely on magnetic flux surfaces as a constraint and thus introduce ERRORS!



How to design a diagnostic to measure Te(r,t)?

         SXR filters (e.g. Be 10, 100, 300 μm)

      X-rays from  
    NSTX plasma  
(midplane: 0< ρ<0.9)

To fiber optics 
  + PMTs 
  + TIAsEc1

Ec2

Ec3

Tangential multi-color (3) optical soft x-ray (tMC-OSXR) array

Multi-color technique (“two-foil” method):
• This technique utilize the multi-color principle, in which the Te measurement 

is obtained by rationing the localized radiation intensities from two energy 
ranges, rather than from an absolute intensity measurement, as is in the case 
of a single color instrument.

• This design approach naturally eliminates a number of factors that degrade the 
accuracy of the conventional single color SXR diagnostics for Te measurements.

ε1, x − ph(r)
ε2,x − ph(r)

≈
Γ 0, Ec1 kBTe(r)( )
Γ 0, Ec 2 kBTe(r)( )

Absolute value of the Te(r) by minimization techniques!

Feedback ne(r,t)⋅nZ(r,t)



NSTX tangential “optical” soft x-ray (tOSXR) array
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Photometric and spatial calibrations inside NSTX

White plate calibration
• The PMT channel to channel sensitivity is 

measured with a white plate calibration.
• Curved plate covered with Kodak white 

paint for emission of white Lambertian
light.

• Two tungsten lamps

Spatial calibration
An absolute calibrated measurement arm 

(FARO arm) is used to locate the 48 sightlines 
using back-projected light from the multi-color 

OSXR tangential views.
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What a tangential line-integrated measurement does?
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The SXR Be foils impose a transmission coefficient T(hν) with a (non-ideal) cutoff energy (Ec,50%) 
determined exclusively by their thickness.

Since each of the elements of the line-integration is weighted by ne
2Te

1/2, the summation will be 
sensitive at locations along the sightline on which the power emitted is peaked. 

In the case of peaked profiles those locations with the strongest weight on the line-summation are 
where the line of sight is tangential to the flux surface.



MPTS ne and Te for Δt ∈[0.2,0.3] ⇒

t=215 ms,  t=231 ms, t=248 ms, t=265 ms, t=281 ms, t=298 ms

Preliminary  results: Te0 ∼ 2.1 keV L-mode

ΔτMPTS ∼ 16 ms

peaking 
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Te0 from tangential line-integrated  multi-color ratio

NSTX shot # 117951

What happen with Sn & Te for 
t ∈ [0.2,0.35] ?

150 ms 150 ms
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Te(r,t) from tangential line-integrated  multi-color ratio
• tOSXR ratio of 300 μm versus 10 μm Be foils: ρ300/10(Rtg,t)=S300(Rtg,t)/S10(Rtg,t)
• Look for splined data from MPTS @ R=Rtg ± 0.3 cm (●)
• Forward technique: Fix a time (tn) @ which is desired to normalize the tOSXR ratios to 

the Te from MPTS ⇒ propagate!

• Since these are profiles derived from line-integrated signals, the accuracy of this first 
approximation technique for outer radii (R>120 cm) is under discussion.

• Why the drops in Te (  )? • Abel inversion is needed!



Is the (NBI-plasma) neutron rate (Sn) Te dependent ?

Are the neutron yield (Sn) and the 
electron temperature (Te) related ?
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Te(r) drops: what is preventing the Te from peaking?  
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Fishbones limiting Te0 during NBI + HHFW

ρ100/10(Rtg,t)

NSTX 117945 NSTX 117950

ρ300/10(Rtg,t)

Δτ~1.8 msΔτ~3.5 ms



MHD fishbones (n=1) ALSO affect Te(r) during Δτfish<τsd

Summary:
1. Strong changes in the background plasma:

a) Sn/V~ni⋅nb ⋅ <σv>; nb~Γb ⋅ τsd; τsd∼Te
3/2/ne; ΔTe ∼ 50 – 150 eV.

b) Changes in ne and the central safety factor q0

2. Fishbones prevent the peaking of the electron temperature profile.

3. Sn ∼ Te
3/2 NBI scaling.

[5] M. F. F. Nave, et al., Fishbone activity in JET, NF, 31, 697, (1991).
[6] B. Wolle, et al., Te determination from neutron rate measurements for NBI-heated high density TEXTOR plasmas, PPCF, 39, 541, (1997).
[7] T. Kass, et al., The Fishbone instability in ASDEX Upgrade, NF, 38, 807, (1998). 
[8] S. Günter, et al., The influence of Fishbones in the background plasma, NF, 39, 1535, (1999).



Preliminary  results: Type I ELMs study at Ip∼800 kA
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Type I ELM preliminary Te(r,t) profiles: Δt1
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Type I ELM OSXR and Te(r,t) profiles: Δt2
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Future: re-entrant “multi-color” poloidal OSXR system?
OSXR array

head  tested on NSTX
NSTX (07) & NCSX

It’s a system based on the OSXR concept 
with an optimized plasma access and the 
capability of recording MHD 
phenomena from the core to the 
periphery SIMULTANEOUSLY!



Further work
• Compare forward modeling to Abel inversions!
• Modify the filter holder to enable photometric (X-ray and visible light) 

calibration in absence of the Be foils. Use SXR extended source.
• Use 500 μm Be foil for increase contrast.
• Use transimpedance amplifiers (bandwidth: DC-40 kHz) module behind PMT.

Conclusions
1. We have designed, build, installed and tested the prototype version of a 

tangential multi-color optical SXR array for fast electron temperature 
measurements.

2. Line integrated signals enabled the measurement of fast electron temperature 
profiles in good agreement with the (slow) Thomson Scattering 
measurements.

3. However in the cases of strong inhomogeneities in the local plasma 
characteristics the limitation of the use of line integrated signals become 
apparent.
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