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Outline

» Sensitivity of tokamak plasmas to 3D error fields
- Error field effects in NSTX plasmas
- Error field identification without plasma response
 Plasma response model
- Effective plasma permeability and inductances

« Computation of perturbed equilibrium
- Perturbed equilibrium and ideal MHD stability analysis
- DCON, VACUUM and IPEC code
 Numerical examples of plasma response
- Accuracy test for computation
- Amplification in the plasma response
- Internal magnetic field structure with the plasma response
- Opening of magnetic island
 Future work

Q@NSTX
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Configuration of coils in NSTX
including “RWM or EF coils”
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Error field generation and compensation
by EF coils

AONSTX
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The right gain and phase
is needed for the best performance

QNSTX
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Examples of the right gain and phase

Applied B, (Gauss)

* Error field can cause LM(Locked
Mode) in low-3 plasma, in which
plasma response may be weak
enough to be neglected

)| L I
. Analyzed on q=2
- N ,=4x108m-3
_ B,~0.4

Inferred
error field

B,, = 1.3G

Applied By (Gauss)

Inferred EF in Low-8

Applied By({G)

@ONSTX

» Error field can affect RWM(Resistive
Wall Mode) in high- plasma, in
which the actual error field may be
significantly different by plasma
response

Shot duration VS Applied field B3/1 on q=3
LIS [SUSUSURUSUSLISUSUSUN] [RURUSUSLRUSUSL RUSU TTTTR T T T T T T

0

0.3 -0.2 0.1 -0.0 0.1 0.2
Applied Bx(G)

Inferred EF in High-
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Analysis for the LM experiments
without plasma response
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Ideal plasma response
by perturbed plasma equilibria

AONSTX

= * Perturbed equilibrium in ideal MHD
13:]'0 X I;+j'>< Z;O—Vp
b=V x (Exby) j=Vxb V-b=0

—

p=—E& Vpy —vpo(V - )

 Difficult to solve the total system
because of the complicated coils
and conductors

One problem all together

‘ Two separate problems

1. The external system + plasma with
a permeability P on the control
surface

2. Perturbed equilibrium with the

il actual field on the control surface

SR ||. Lol without the external system
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Effective plasma permeability

Q@NSTX

* The effect on plasma by external
B currents is given by ‘external field’ (b* - 7)(0,(¢)

on the control surface

* The effect on external system by
plasma is given by ‘plasma field’ (4* - 2)(6, ¢)
on the control surface

i  ‘Actual field’ is given by
(b-7)(6,¢) = (b - )(6,¢) + (b7 - 2)(6,C)
 Permeability gives the relation from the
external field to the actual field
= (5-7)(8,¢) = P(5* - 2)(6,¢)

B

EH

 Knowing the actual field on the control
surface, we can use DCON stability
ey code to obtain the plasma
displacement £(%) inside, which gives
the perturbed equilibrium of plasma

I T ||
I I S e e ey s Iy Iy v |
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Method for obtaining the plasma permeability

AONSTX

hoOoN =

o

Set the system with plasma, vacuum and wall at infinity

Choose the plasma-vacuum boundary as the control surface
Put perturbed normal magnetic fields on the control surface
Compute the actual surface currents and plasma inductance

=A-J  (b-7)0,()=Re (Z ¢mﬁei<m9"<>> k(6,¢) = Re (ij\/fue“m"%))

Eliminate the plasma inside and put the same perturbed fields
Compute the external surface currents and surface inductance

d=1-J" (l; n)(0,¢) = Re (Z (I)m\/aei(meng)> k¥(0,() = Re (Z Jﬁlﬁei(mencv

Note that the same surface currents can be used instead of fields
d=A-J d*=L-J

Compute the permeability matrix and the plasma response
P=A-L! d=p. o°
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The surface current on the control surface

@ONSTX

» Perturbed equilibrium. Vs. Stability analysis

—

1 — - = - — - —
5Wtot:—§/§-F(§)d3x F=joxb+jxby—Vp
p
Integrating by parts of E (; X I;O) And if the unperturbed pressure smoothly goes to zero,

W, :5W—ﬁ/wpfw—/1faf
et g 2;“0 e 2

» The surface current exists to carry the perturbation energy

If the surface current satisfy the conditions of j-Vp=0 V-57=0

Then the surface current potential can be used j = (Y —.)VE(0,() x Vi

MP I
Wit = W, + dPr— [ =kb-ds
2,“0 c 2

Neglecting the kinetic energy, the total potential energy should be conserved as zero,
Therefore, if we put an external perturbation through the last term then,
B2

— 1 - - 3
5W:l2mb d5= oW, + | 3 -d'a
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Magnetic scalar potentials

Q@NSTX

* The tangential magnetic field on either side gives the surface current
 The magnetic scalar potential for each side is useful

For external vacuum,  b(€) = Vx(e) So, /%,@E ds = oW, — /%X(e)g. ds
c c 4Ho

It implies that there should be an effective magnetic potential for the plasma part

1 - 1 — 1 > .
/—/s;b-d§: — Pp.dzg— [ —¥b.ds pok = x® — (e
C 2 C 2:[’[/0 C 2,[1/0

ow, = /Q—X(p)b .ds
0
The surface current term can be divided into each part, s

|b|2 3 (e) >
—d’r = — b-ds
e 2Ho 2#0

 The magnetic scalar potential can be calculated by perturbed quantities
as results from the stability analysis

5 (p) 5 1 (P) E L5 = o\ W
nx Vx = nx (0¥ + ((f +f)(HoJo X n))
AxVx© = faxbpe

* Inner vacuum case can be treated in the same way
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DCON, VACUUM and IPEC code

QNSTX

Do the stability analysis by using DCON/VACUUM code to obtain the
perturbed eigenmodes for the given equilibrium
Calculate the normal magnetic fields on the orthonormal bases

(b-7)(0,¢) = Re (Z @m\/ae“m@w) w=1/1/TJ|Vi|

Calculate the magnetic scalar potentials

(C- (9/9C))m

X (6,¢) = Re (Z Xé?ﬁe“mem) X =— (09 - (07/00))

m
b - (0Z/9C))m

m

Xr(rlz)):_

X0 = !
Calculate the surface current potentials

G D A
m MOJU - X i) X e
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DCON/VACUUMIIPEC code

AONSTX

Check the accuracy. If it is not enough, keep the large mode numbers

]_ — — — —
oW, = _(X(p)T . O+ of -X(p))
4o
PR, - Lz g4 3@
e 210 4o

Calculate each inductances and permeability matrix by gathering all
the previous eigenfunctions

(A mmr = ZZ(CI)_l)maea((q)_l)T)am/
Ay = Re()_ @ra(J ™ am)
Lo = Re(D o (T am) m’

Calculate the actual field on the control surface with the given
external magnetic field, and calculate internal field with the given
actual field by manipulating DCON code
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Application to the NSTX plasmas

Z(m)

@ONSTX

<J.B>/<F/R?> profiles

20 1
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(L o 00 ]
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Examples of the eigenfunctions

(b.n) (6) (b.n),(6) (b.n)(0) (b.n)(0) (b.n), ()

AONSTX

* The five least stable eigenmodes for the equilibrium including the
unstable mode, marginally stable mode, other stable modes

—

Cosine(or real) part of n=1 mode as a function in Hamada coordinates, for example, (b - 1) (8)cos(¢)
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The accuracy of the code

Energy(arbitrary unit)

Energy(arbitrary unit)

Q@NSTX

O Surface energy for plasma % » Surface current carries all the
X plasma energy % . . .
100d perturbation energy in high
M accuracy for plasma and vacuum
L
B * Two different ways to compute
ol & H the plasma inductance show a
. good agreement
0 5 10 15
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— s|| O eigenvalues of A’
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[} » . @)
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The plasma response on the control surface

DNSTX

* Plasma tends to pick up the marginally stable structure on the control
surface, with amplification depending on the external perturbation

Cosine(or real) part of n=1 mode as a function in Hamada coordinates

= =
5 =
a "2
g g
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i E
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The plasma response to the external error field

AONSTX

 Amplification effect is the largest nearby the marginally stable point

Cosine(or real) part of n=1 mode as a function in hamada @ and normal toroidal @
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Internal structure of
perturbed magnetic field

@ONSTX

* Internal structure of the perturbed magnetic field shows the similar
amplification effect as well

Cosine(or real) part of n=1 mode as a function in hamada @ and normal toroidal @
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Internal structure of
perturbed plasma displacement

@ONSTX

* Internal structure of the perturbed plasma displacement shows the very
large distortion of plasma nearby the resonance surface with the similar
amplification tendency

Cosine(or real) part of n=1 mode as a function in hamada @ and normal toroidal @
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Internal structure of

the derivative of perturbed magnetic field
@ONSTX

* The jump of the derivative of * Delta quantity is defined by

perturbed magnetic field is B

related to the magnetic island A |9 (bVY

width in the resistive layer oo \b-ve /)]

s~ 0.08
. 0.025 g : :
) Q 1o
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Q Y
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The ideal MHD approximation for the magnetic
iIsland consideration

Q@NSTX

 Issue is how to define the legitimate distance from the exact rational
surface in ideal MHD approximation

» ldeal DCON crosses each rational surface by eliminating each large
solution component in the ideal limit

* There exists a quasi-asymtotic value of the delta in very wide region
around the each rational surface

0.003

0.002 4

b’ (arbitrary unit)

0.001 -

(per 1Gauss m=2 perturbation)

A4
mn

' ' iy - 0 3111 Y S—
0.0 0.2 0.4 0.6 0.8 1.0 1E-6 1E-5 1E-4 1E-3 0.01 0.1

Distance from the rational surface(y)

Normalized v
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The control of the magnetic island opening

@ONSTX

A,..(per 1 Guass perturbation)

S,=4.91 x1072

Take the distance away from 24
the rational surface as 1) = +1073

0.02 @

SVvD

S,=3.33 x10°

(b".n)(8)(arbitrary unit)

(b)

0.01 4

0.0 ' 0!2 I 0:4 ' 0!6 I 018 ' 1.0

Normalized ¢

Permeability matrix

0.00 . . .
0 10 20

Mode number m of perturbation on the control surface

 The broad spectrum for the
external modes can be
understood by SVD analysis
about the coupling matrix

(b.n)(¢)(arbitrary unit)

10 -
5
04 (b)
5

A=K.H* e

0.0 ' 0:2 I 014 I 0:6 i 018 I 1.0
Normalized o
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Future work

Q@NSTX

 More benchmarking study

- Surface consideration with non-zero edge current/pressure
plasma equilibrium

- Application to the DIII-D/ITER

- Direct comparison with other stability codes
 More study for characteristics of the plasma response
- B or shape effect on the plasma response in the different
coordinate system
- Mode jump on the rational surface
 Application for the various purposes
- Computation of plasma rotation damping
- Feedback routines for the resistive wall mode control
 Implementation of interface with experimental devices

- The gain and phase of control coils to obtain the best
performance during NSTX plasma operation
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