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Long-Wavelength MHD Stability at High Pressure Required for 

ITER and Other Next-Step Devices

� Motivation

� resistive wall mode (RWM) can cause plasma disruption at high β

� RWM can be stabilized passively and/or actively

� low rotation (ωφ) in future devices increases susceptibility to RWMs

� NSTX is examining passive stabilization physics by 
applying n = 1 - 3 fields in order to study:

� ωφ at rational surface vs. ωφ profile for stability determination

� critical ωφ for passive stability (Ωcrit) 

� Ωcrit correlation with energy dissipation physics models

Understanding the passive stabilization physics that determines RWM 

stability is important to determine requirements for RWM active stabilization
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Non-axisymmetric coil enables key physics studies on 

NSTX

� RWM active stabilization

� Midplane control coil similar 
to ITER port plug designs

� Plasma rotation control

� A tool to slow ωφ by resonant 
or non-resonant fields

� RWM passive stabilization

� Plasma rotation profile, ion 
collisionality, νii, important for 
stability

� Non-resonant ωφ braking 
preserves stability boundary

RWM active stabilization coils

RWM sensors (Bp)

RWM sensors (Br)

Stabilizer

plates
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RWM actively stabilized at low, ITER-relevant rotation

� First such demonstration 
in low-A tokamak

� Long duration > 
90/γRWM

� Exceeds DCON βN
no-wall

for n = 1 and n = 2

� n = 2 RWM amplitude 
increases, remains 
stable while n = 1 
stabilized

� n = 3 magnetic braking 
to reduce ωφ

� Non-resonant braking 
to accurately determine 
Ωcrit

Sabbagh, et al., PRL 97 (2006) 045004.
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Rotation profile shape important for RWM stability

� Benchmark profile for 
stabilization is ωc = ωA/4q2 *

� predicted by semi-kinetic theory**

� Rotation outside q = 2.5 not 
required for stability 

� n = 3 used to brake stable ωφ
below ωc

� Scalar Ωcrit/ωA at q = 2 , > 2 not 
a reliable criterion for stability

� variation > ∆ωφ in one time step

� consistent with distributed 
dissipation

*A.C. Sontag, et al., Phys. Plasmas 12 (2005) 056112.
**A. Bondeson, M.S. Chu, Phys. Plasmas 3 (1996) 3013.
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Ωcrit not correlated with Electromagnetic Torque Model

� Rapid drop in ωφ when 
RWM unstable may seem 
similar to ‘forbidden 
bands’ theory

� model: drag from 
electromagnetic torque on 
tearing mode*

� Rotation bifurcation at ω0/2 
predicted

� No bifurcation at ω0/2 
observed

� no correlation at q = 2 or 
further into core at q = 1.5

� Same result for n = 1 and 3 
applied field configuration

*R. Fitzpatrick, Nucl. Fusion 33 (1993) 1061

NSTX Ωcrit Database

(ω0 ≡ steady-state plasma rotation)
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Ωcrit Not Determined By n = 3 Braking Field Magnitude

� Applied n = 3 braking field 
varied in similar discharges

� non-resonant field should not 
perturb RWM stability boundary

� Ωcrit/ωA unchanged within 
∆ωφ during one time step

� time of RWM onset delayed at 
lower field

Rotation @ q = 2 varying
n = 3 braking current

n = 3 field on

Consistent with RWM stability boundary that is unaffected by applied field
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Increased νii Leads to Decreased Ωcrit

� Plasmas with similar Alfven 
velocity, vA, compared 

� Ip & Bt scaled for constant q

� Consistent with neoclassical 
viscous dissipation model

� at low γ, increased νii leads to 
lower Ωcrit

� modification of Fitzpatrick 
“simple” model

� Similar result for neoclassical 
flow damping model at high 
collisionality (νii > 1/τtransit)

(R. Fitzpatrick, et al., Phys. Plasmas 13 (2006) 072512.)

(K. C. Shaing, Phys. Plasmas 11 (2004) 5525.)
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RWM Stabilized Upon Growth of Internal Mode
� RWM growth observed in magnetics and USXR without disruption

� Internal mode growth averts disruption, saturates β below βN
no-wall

� DCON m = 1 component increases in time in non-disruptive cases

� 116927: q0 ~ 1.15 at collapse

� 117291: q0 ~ 1.45 at collapse
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Understanding RWM Passive Stability Physics Critical 

to Advanced Operation in Next-Step Toroidal Devices

� Scalar Ωcrit inadequate to define RWM passive stability 
boundary

� significant variation in Ωcrit observed at q = 2 surface 

� large rotation at q > 2 not required for RWM passive stability

� NSTX Ωcrit data inconsistent with EM torque model

� more complete RWM physics model needed for ITER predictions

� Applied n=3 field magnitude does not determine Ωcrit

� Ωcrit from non-resonant braking extrapolates to other devices

� Decreased νii leads to increased Ωcrit

� increased rotation required for RWM stability in ITER


