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Study of hole-clumps addresses
Important area of physics for ITER

NSTH ——
e MHD-induced fast-ion losses can raise ignition threshold,
damage plasma facing components.

e Non-linear behavior of modes controlled by y., yp and fast
lon phase space diffusivity, ves.

e Simultaneous up-down frequency chirping (hole-clumps)
one manifestation of non-linear behavior.

e Hole-clumps give insight on instability drive, damping,
and veft.

- Non-linear physics of mode saturation; vital for predicting
impact on fast ion confinement

e Heating the fast ion population, e.g., with HHFW,
Increases vetr, provides a window on fast ion distribution.



Hole-clumps common on NSTX
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NSTH ——

Higher frequency
modes are GAE and
CAE, excited through
Doppler-shifted ion
cyclotron resonance.

Modes commonly
exhibit chirping (hole-
clump) behavior.
Modes have mixed

polarization; CAE or
GAE



Single bursts have frequency
chirping like hole-clumps

NSTH ——

- Red curve is single parameter fit to frequency evolution using
model of hole-clump pair creation™.

+ This system is much more complex, Doppler-shifted cyclotron
resonances, possibly other multiple resonances.
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Angelfish frequency is consistent
with either GAE or CAE

Both up and down chirp modes are n = 5.

NSTX ——

Growth rate, y /o = 5.3% in agreement with Nova vy, /0w = 4%.

&E
Mode k, can be estimated

from dispersion relation
and toroidal mode number.

If CUGAE ~ k// VAvaén,
Vaiven = 7.2 x 10 m/s,
ki=4.5m’!

If CUCAE ~ k_L VAvaén,
Vaiven = 6.1 x 10° m/s,
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Perpendicular fast ion "bump-on-
tail" near axis (GAE)

w=w, - kIIVbII

 The mode and ion

cyclotron frequency are
known, k, =~ 4.5 m-"
deduced from GAE
dispersion relation.

 The lines indicate fast

lons that satisfy the
resonance condition
initial and extremes of
frequency chirps.

NSTX ——
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CAE localized further out, mode
driven at higher pitch angle

w=w, - kIIVbII

* Bump-on-tail is at

higher pitch angle
further out.

+ Lower k, (= 3.2 m1)

needed to satisty
resonance condition.

« Resonance located on

peak gradient in
perpendicular “bump-
on-tail”.
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Approximately 2 MW of HHFW
can suppress Hole-clumps

e The Angels become
weaker and shorter
when the RF turns on,
mixed with intermittent
larger chirps/bursts).

e Then there is a period
with no mode activity.

o After RF, the modes
reappear, but are no
longer chirping - HHFW
suppresses mode drive?
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~ 2 MW HHFW marginal for Hole-
clump stabilization

NSTX ——
e Condition for HHFW to affect hole-clumps™:

- (OE/E)? > (wblw)? = (y/2w)?
o Growth rate estimates” from slowing down distribution as

calculated in TRANSP for the CAE is y/w = 0.04; from the
frequency sweep v/w = 0.053:

- (Y2w)? =4 -7 x 104
e Stochastic diffusion (heating) from HHFW estimated from
NPA data' to be 2 x 10* keV?/s:
- OE?=Det=2x 10*keV?/s x 2 x 10%s = 4 keV?
- (OE/E)? =5 x 104

"W W Heidbrink, et al., PPCF 48 (2006) 1347., Berk, et al., IAEA, Chengdu, China, 2006



Summary

N/CT Y
INQ N —

Bursting/chirping modes seen in CAE/GAE frequency range.

Frequency chirps fit Berk-Breizman-Petviashvilli hole-clump
model, growth rate in agreement with Nova for CAE;

- y/w = 0.04 vs. 0.053.

Both CAE/GAE modes satisfy perpendicular bump-on-tail
resonance condition with k;, derived from dispersion relation.

Range of frequency chirps matches extent of bump-on-tail.
2 MW HHFW is some cases suppresses frequency chirps.

Estimates suggest that HHFW power threshold is > 2 MW to
affect hole-clump frequency chirps.



Hole-Clump simulations have

secondary (satellite) modes

(a)

* Perturbations in
distribution function <t>[
drive mode frequency
off resonance, triggers
bifurcation.

- Subsequent
perturbations trigger
satellite modes.

Fig. 3, H. L. Berk, B. N. Breizman, et al.,
Phys. Plasmas 6, 3102



